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Preface

This monograph is a revised version of the D.Phil. thesis of the first author,
submitted in October 1990 to the University of Oxford.

This work investigates the problem of mobile robot navigation using
sonar. We view model-based navigation as a process of tracking naturally
occurring environment features, which we refer to as “targets”. Targets
that have been predicted from the environment map are tracked to provide
vehicle position estimates. Targets that are observed, but not predicted,
represent unknown environment features or obstacles, and cause new tracks
to be initiated, classified, and ultimately integrated into the map.

Chapter 1 presents a brief definition of the problem and a discussion
of the basic research issues involved. No attempt is made to survey ex-
haustively the mobile robot navigation literature—the reader is strongly
encouraged to consult other sources. The recent collection edited by Cox
and Wilfong [34] is an excellent starting point, as it contains many of the
standard works of the field. Also, we assume familiarity with the Kalman
filter. There are many well-known texts on the subject; our notation derives
from Bar-Shalom and Fortmann [7].

Chapter 2 provides a detailed sonar sensor model. A good sensor model
is a crucial component of our approach to navigation, and is used both for
predicting expected observations and classifying unexpected observations.
Kuc and Siegel first reported that in a specular environment, sonar data
should take the form of circular arcs in Cartesian coordinates. We call
these features regions of constant depth (RCDs), and show how real sonar
data, acquired with the Polaroid ranging system, can be both predicted
and explained in terms of these features.

Chapter 3 presents an algorithm for model-based localization that is
based on an extended Kalman filter (EKF) that utilizes matches between
observed RCDs and RCDs predicted from an a priori map to update posi-
tion. The algorithm has been implemented on several different robots, using
real data. Localization runs in two different laboratories are presented.

In Chapter 4, the discussion turns to the map building problem. We
view map building as a process of initiating tracks for events unexplainable

xix
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in terms of the environment map. Experimental results are obtained for the
restricted case of learning an unknown room from precisely known vehicle
locations. A simple office scene is mapped to sub-centimeter accuracy.

Chapter 5 presents a unified approach to navigation, in which the mul-
tiple requirements of localization, obstacle avoidance, and map building can
be simultaneously addressed in a common multitarget tracking framework.
Localization while learning and map maintenance in a dynamic environ-
ment are discussed.

Chapter 6 describes the concept of directed sensing. The slow data
acquisition speed of acoustic sensing makes practical sonar-based navigation
difficult to achieve. To overcome this problem, we believe that directed
sensing strategies can be used to achieve fast, continuous operation. By
tracking environment targets as the vehicle moves, less data needs to be
acquired, and the need to re-solve the correspondence problem at each
iteration of the perception cycle is obviated.

Chapter 7 assesses sonar’s potential in comparison with other range
sensing modalities and discusses an agenda for future research.

Appendix A provides hardware and software details for the implemen-
tations.
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Chapter 1

Introduction

Although the robots we see in science fiction movies appear to navigate
with effortless precision, in reality mobile robot navigation is a difficult
research problem. Indeed, simply answering the question “where am I?” in
truly autonomous fashion is a serious challenge for today’s mobile robot.
We use the term localization to refer to the process of determining a robot’s
position using information from external sensors. Our research has focused
on the provision of this capability using airborne ultrasonic range sensing,
which shall henceforth be referred to as sonar.

1.1 The Navigation Problem

Stated most simply, the problem of navigation can be summarized by the
following three questions: “where am I?”, “where am I going?”, and “how
should I get there?” The first question is one of localization: how can I work
out where I am in a given environment, based on what I can see and what
I have previously been told? The second and third questions are essen-
tially those of specifying a goal and being able to plan a path that results
in achieving this goal. Investigations of the latter two questions usually
come under the domain of path planning [86] and obstacle avoidance [127],
[14]. In this book, we are principally concerned with the first, localization,
question, and maintain that finding a robust and reliable solution to this
problem is an essential precursor to answering the remaining two questions.

The problem of position determination has been of vital importance
throughout the history of humanity [75]. The basic process of distance
measurement, correlation, and triangulation was known to the Phoenicians,
who successfully managed to build and maintain quite accurate maps of the
Mediterranean area. Today, navigation is a well-understood quantitative
science, used routinely in maritime, aviation, and space applications. Given

1



2 CHAPTER 1. INTRODUCTION

this, the question must be asked why robust and reliable autonomous mo-
bile robot navigation remains such a difficult problem. In our view, the
reason for this is clear. It is not the navigation process per se that is a
problem—it is the reliable acquisition or extraction of information about
navigation beacons, from sensor information, and the automatic correla-
tion or correspondence of these with some navigation map that makes the
autonomous navigation problem so difficult.

Implementing a navigation system that uses artificial beacons together
with sensors that provide accurate and reliable measurements of beacon
location is a straightforward procedure used by many commercial robots
today. For example, the GEC Caterpillar automatic guided vehicle (AGV)
uses a rotating laser to locate itself with respect to a set of bar-codes that are
fixed at known locations through the AGV’s environment. More recently,
TRC Corporation have developed a localization system for the HelpMateTM

service robot that provides 24-hour operation in hospitals and offices, using
retro-reflective strips mounted on the ceiling as navigation beacons [128].
The goal of our research is to achieve comparable performance to arti-
ficial beacon systems without modifying the environment, by sensing the
naturally-occurring geometry of typical indoor scenes, and comparing these
observations with a map of the environment. This competence of localiza-
tion would provide a mobile robot with the ability to determine its position
without artificial help, such as bar-code markers on the walls.

While a limited form of this competence might use hand-measured
maps of the environment provided a priori to the robot, completely au-
tonomous operation will require that the robot construct and maintain its
own map in a changing environment. For the moment, we neglect the more
difficult problem of dynamic map building and maintenance [87], and state
our goal as the development of an autonomous system that can

1. build a large-scale, metrically accurate map of a static, people-free
environment and

2. use this map for localization at arbitrary locations within the envi-
ronment.

One test of such a capability would be the following experiment:

The weekend experiment: The scene is a typical office building.
At 5:30 pm on a Friday night, we power-up the robot in an arbitrary
starting position with a blank memory—i.e. no a priori map. We tell
the robot “use the next few days to travel at your leisure around your
environment to make a map of the accessible space on this floor of the
building, without harming yourself or the environment.” We turn off
the lights and leave. On Monday morning, we return to find the robot
back at its starting position, ready to execute commanded trajectories
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quickly, using its learned map for accurate position determination at
arbitrary locations in the environment.

To our knowledge, this test is beyond the capability of any robot in existence
today, using any sensing modality.

1.2 Why Use Sonar?

One motivation for using sonar for mobile robot navigation comes from the
impressive ultrasonic sensing capabilities of bats, who rely on echolocation
to determine their position and to hunt their prey [132]. Bats use fre-
quency modulation, Doppler, and other ultrasonic ranging techniques that
are far more sophisticated than the simple time-of-flight (TOF) ranging
approach investigated in the experiments reported here. The use of time-
of-flight sonar in robotics has received a great deal of effort, but despite
some successes, results have generally been disappointing. For this reason,
many feel that more sophisticated sonar devices that incorporate frequency
modulation and amplitude-based interpretation are necessary, or that opti-
cal alternatives must be used, in order to achieve autonomous navigation.
More sophisticated sonar techniques would of course be welcome, and the
increasing capabilities and decreasing cost of optical rangefinders cannot
be denied. Nevertheless, we believe that our experimental results provide
evidence that time-of-flight sonar can in fact fulfill the perception role for
autonomous navigation, in a large class of application environments.

1.3 Choosing a Representation

Choosing a representation is perhaps the single most important step in
sensor data interpretation, a point stressed by Stewart:

The type of representation we use determines what information is
made explicit in the model; the purposes for which a model can be
used and the efficiency with which those purposes can be accom-
plished follow directly from the choice of representation. [123]

Stewart provides a comprehensive discussion of the considerations involved
in choosing a representation [123]. For his application domain of underwater
multisensor modeling, he advocates a cellular, volumetric representation,
analogous to the certainty grid that was first proposed for sonar-based
navigation by Moravec [100]. The concept was further developed by Elfes
using a Bayesian methodology to become the occupancy grid [45].

The occupancy grid divides free space into a discrete, two or three
dimensional grid of cells. Each cell is assigned a single value between 0 and 1
to represent the probability that the cell is unknown, occupied, or free space.
Using a probabilistic sensor model, this value is increased or decreased as
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new sonar returns are obtained from sensors pointed in the direction of the
cell. Experimental results have been presented for a broad range of tasks
including path planning, obstacle avoidance, motion solving, and sensor
fusion [46], [47]. A significantly different grid-type representation, called
the vector field histogram, has recently been developed by Borenstein and
Koren for the purpose of very fast obstacle avoidance [14].

The primary alternative to a grid-based approach is the use of a geo-
metric, feature-based representation, in which the environment is modeled
by a set of geometric primitives such as points, lines, and planes. The first
step in interpretation is the extraction of geometric features from raw sen-
sor data. Several crucial issues are the representation of uncertainty [43],
the reliability of feature extraction, and the speed with which the model
can be constructed. Crowley developed one of the earliest feature-based ap-
proaches to sonar, introducing the concept of the composite local model [37].
The composite local model is built by extracting straight line segments from
sonar data, and is matched to a previously stored global line segment map
to provide localization.

In this work, we shall utilize a geometric representation and will rely
upon the following fundamental assumption:

The 2-D assumption: we assume the actual three dimensional ge-
ometry of the environment is orthogonal to the horizontal plane in
which the robot moves.

An assumption of this magnitude is made with a certain degree of reluc-
tance. For example, there is a good chance that the reader is sitting in a
chair that is quite three-dimensional. We cannot hope for any success with
amorphous, natural terrain, such as the bottom of the ocean or the surface
of Mars. However, we believe that the above assumption can be satisfied
to a sufficient degree in practice to permit effective navigation in a wide
range of man-made environments.

Based on this assumption, we shall represent the surface geometry of
the environment in terms of three basic primitives: points, lines, and arcs,
as will be described in more detail in the next chapter.

Grid-based representations make weaker assumptions about the envi-
ronment than our geometric approach, and hence have a wider domain of
application. Also, computational requirements will be much less sensitive
to environment complexity. However, our contention is that they are less
powerful than geometric models for the purpose of dynamic, globally ref-
erenced position estimation. For the fastest and most accurate operation
possible, we argue that it is necessary to be able to predict the values of
individual sonar returns. We believe that this is not possible using the
occupancy grid, because there is no explicit characterization of the geom-
etry of the reflecting surfaces of the environment. It does not capture the
physics involved.
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We must emphasize, however, that choosing a representation is a sub-
jective endeavor, at least at this early stage of development. A proponent
of grid-based representations could dispute the assertions of the previous
paragraph, with some justification. An objective comparison between dis-
crete and geometric approaches, using the same robot in a variety of en-
vironments, would be a valuable contribution to the robotics community.
Unfortunately, such a comparison will probably have to wait until genuine
long-term autonomy—self-localization using autonomously learned maps—
has been conclusively demonstrated with each approach.

1.4 The Kalman Filter

The basic tool of our approach to navigation is the extended Kalman filter
(EKF). A good source of historical and intuitive insight into the subject is
the work of Sorenson, which traces the development of least squares estima-
tion techniques from Gauss to Kalman [117]. Kalman filtering techniques
have been used extensively in location estimation problems such as missile
tracking and ship navigation [119]. There have been many notable applica-
tions of the EKF in mobile robot systems. For example, Dickmanns uses an
EKF in a real-time vision system that achieves autonomous road-following
at speeds over 80 km/hour [39]. Ayache [5], Harris [64], Matthies [93], and
Kriegman [78] have used the EKF for visual model building and motion
estimation. Smith, Self and Cheeseman have applied the EKF to the prob-
lems of map-making and position estimation [115]; we will discuss their
work at length in Chapter 5.

The use of the Kalman filter in the robotics community has been some-
what confusing, as pointed out by Hager:

The true contribution of the Kalman filter, as it was initially stated
and derived by Kalman and others, was the efficient computation of
a MMSE problem with a dynamic system describing variations in the
unknown parameters. Much of the [robotics] literature which refers
to Kalman filters is in fact using MMSE techniques for estimating
static parameters—a result dating back to Gauss. [61]

When considering Kalman filtering, understanding notation is more
than half the battle. The notation we use in this monograph derives from
Bar-Shalom [7], a good introduction to the EKF and multitarget tracking.
Other commonly referenced textbooks on the subject include Gelb [54],
Jazwinski [73], and Maybeck [94]. Following Bar-Shalom, we use the term
x̂(k2 | k1) to designate the estimate of the vector x at time step k2 given all
observations up to time step k1. An alternative often seen in the literature
is the tilde-caret notation [62], in which x̃(k) denotes the prediction of the
state vector x(k) based on information available strictly before time k, and
x̂(k) denotes the estimate of the state vector x(k) based on information
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available up to and including time k. Gelb uses yet another convention, in
which x̂k(−) denotes the predicted state at time k and x̂k(+) denotes the
updated (estimated) state at time k [54].

The Kalman filter relies on two models: a plant model and a measure-
ment model. The plant model describes how the position of the vehicle
changes in response to motor control inputs, with an estimate of dead
reckoning errors. The measurement model makes explicit the information
provided by a sensor measurement in terms of the current vehicle position
and the positions of geometric features in the environment, with an esti-
mate of measurement noise. These concepts will be described with more
precision in the chapters that follow.

Figures 1.1 through 1.4 illustrate the application of the EKF for a sim-
ulated robot vehicle, equipped with a single servo-mounted sonar, moving
in a two-dimensional world of specular planar surfaces. Figure 1.1 is a
simulation in which no planar surfaces are present, showing how position
uncertainty grows in accordance with the system plant model if no sensor
observations are available. Figure 1.2 shows the use of range measurements
to a wall to update position. As will be discussed in Chapter 2, the only
part of a smooth wall that can be “seen” by a sonar sensor is the portion
of the wall that is perpendicular to the incident sonar beam. Thus, un-
certainty grows as before for the first two cycles of the filter. After the
wall comes into view, range measurements to the wall provide a position
update perpendicular to the wall, while uncertainty continues to grow in
the parallel direction. Figures 1.3 and 1.4 illustrate position estimation
from multiple walls. As different walls come in and out of the sonar’s view,
uncertainty is reduced in different degrees of freedom.

Caution must be taken in using the Kalman filter and its non-linear
extensions for the following reasons:

• Are the assumptions of the filter met in practice?

• How are values chosen for the noise sources, validation gate size, and
other parameters?

• Divergence of the EKF. The system can become overconfident, and
hence the estimate covariance P(k | k) becomes too small. In tradi-
tional estimation problems, this has the result that new measurements
are given too little weight. In our application, because of the valida-
tion gate approach we use to reject outliers, when the filter diverges
we will reject correct measurements. This is a crucial issue in the
design of an actual working system.

It is important to remember that for the EKF, the state covariance matrix
P(k | k) is only an approximate mean square error, not a true covariance [7].
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Figure 1.1: A simulated run with no visible beacons. The triangle represents
the actual vehicle position and orientation (x(k), y(k), θ(k)), the rectangle
represents the estimated vehicle position and orientation, and the ellipse
represents the confidence in the estimates of x(k) and y(k).
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Figure 1.2: A simulated run taking observations of a single wall beacon.
After the wall comes into view, the error ellipse shrinks perpendicular to the
wall as a posteriori confidence in the estimate of x(k) and y(k) increases.

Figure 1.3: Localization from one, then two wall beacons.
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Figure 1.4: Localization from a sequence of wall beacons.

The Kalman filter itself is not the representation. It is simply an engine
for recursively computing state estimates of interest. It requires that the
value produced by a sensor can be expressed with an equation, as a function
of vehicle position, target state, and measurement noise. In our approach to
navigation, for a wall target the EKF is useful only in estimating the infinite
line parameters R and θ. The endpoints of a line segment target cannot
be directly estimated from observations of the wall, as the measurement
model becomes an inequality. One selling point for sonar is that we can
directly observe the corners and edges that populate many environments,
and estimate their locations directly with the EKF. To produce the map
building results of Chapter 4, line segment endpoints are computed by
projecting new observations onto each new infinite line estimate. From our
limited experience processing infrared rangefinder data, we have found that
estimating line segment endpoints can be a difficult issue using an optical
modality.

The enthusiasm with which we embrace the Kalman filter has been
criticized as approaching religious fervor. We counter that it is a tool that
we find too useful to do without. The invaluable role of the EKF in so
many demanding applications, such as the Voyager spacecraft missions to
Jupiter and beyond [26], supports our position. Some of these implemen-
tations model the physical system with extreme detail. For example, the
Voyager navigation filter used a plant model with 67 states [26]. We cannot



10 CHAPTER 1. INTRODUCTION

yet approach this level of rigor in modeling because of the pervasive data
association problem that we have to tackle first.

1.5 Data Association

A fundamental requirement of perception is the task of achieving and main-
taining correspondence. The correspondence problem (also called the data
association or segmentation problem) is what makes perception and sensor-
based control different from traditional estimation and control problems.
The crucial difference is uncertainty in the origin of measurements. The
key to using a measurement from a sensor is knowing “what is being mea-
sured?” For example, the sensory correspondence issue is absent from the
problem of the end-point control of a robot manipulator, because sensory
inputs take the form of shaft encoders, velocity sensors, etc. Extend the
problem to include the manipulation of imprecisely located objects with
this robot arm, and the character of the problem changes completely. Ex-
ternal sensing of some kind, e.g., computer vision, is needed to determine
the position of the object. Successful use of sensing requires overcoming
the correspondence problem.

Dynamic perception refers to the use of sensing in a fast, continuous
cycle, and has been implemented in several notable robotic systems. An-
dersson has built a robot that can play ping-pong [3]. Dickmanns has
achieved highway navigation at speeds over 80 km/hour [39]. These two
systems are impressive because of their incorporation of sensing in a real-
time control loop. However, note the absence of the sensory correspondence
problem from “the loop”. Andersson’s vision system tracks a single white
ping-pong ball. Initial experiments relied on a dark background but this re-
striction was subsequently lifted. In Dickmanns’ system, region-of-interest
windows maintain continual correspondence with lane markings and road
boundaries.

The aim of directed sensing is to separate the correspondence prob-
lem from the subsequent estimation and control problem, through the use
of tracking sonars. The basic low-level competence is the focus of atten-
tion. This is used to maintain correspondence with individual environment
features during the vehicle or sensor’s motion. By focusing attention on a
feature, correspondence can be easily maintained once it has been achieved.
By tracking a given environment feature, a high bandwidth stream of cor-
rectly associated measurements to this feature becomes available. The suc-
cess of artificial beacon systems (and aerospace and maritime navigation in
use all over the world) demonstrates the straightforward nature of position
estimation if the correspondence problem is solved.

We envision a robot that maintains continuous map contact , almost
effortlessly gliding through its environment, “grabbing hold” of corners,
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planes, and cylinders in the environment, using them as handrails. Rather
than using sensing every now-and-then to answer “where am I?”, by main-
taining continual correspondence with some subset of map features, percep-
tion can be put “in the loop” to provide high bandwidth position control.

1.6 Overview

We believe that mobile robot navigation can be cast as a multitarget track-
ing problem. The targets to be tracked are stationary features of the envi-
ronment. Building a map is the task of estimating the locations of unknown
targets in the environment—a process of track initiation. Using the map for
localization is a two stage process of 1) determining the correspondence be-
tween current sensor measurements and the targets in the map and 2) using
this correspondence to update the robot’s position. The challenge of truly
autonomous navigation lies in the fact that map building and localization
must be undertaken simultaneously.

Multitarget tracking provides a framework in which to accomplish these
competing objectives. The following chapters present the three basic com-
ponents of this framework in detail. We begin in Chapter 2 by developing
a sonar sensor model that can be used to extract and interpret the in-
formation conveyed by sonar data. Chapter 3 describes a model-based
localization algorithm that tracks expected events to determine the robot’s
position. Several implementations of this algorithm are presented. Chap-
ter 4 deals with the bottom-up interpretation of unexpected observations
to provide obstacle detection and map building capabilities. Experimental
results demonstrate successful map building with real sonar data.

We then proceed in Chapter 5 to bring the results of the previous
chapters together to describe a unified navigation framework. Unfortu-
nately, this combined system remains in development—we cannot yet, for
example, show results for model-based localization using an autonomously
learned model. (Our experiments in Chapter 3 demonstrate a limited form
of a competence of localization by using hand-measured environment maps
that are provided a priori to the robot.) As we state elsewhere, we believe
this is the crucial capability that will in the long term judge the success or
failure of the approach. Further, success in real applications will require the
ability to deal with a dynamic environment, necessitating an inference pro-
cedure in which missed detections provide information about state changes
of targets in the map. Some results from our recent collaboration with
Ingemar Cox in this area will be summarized in this chapter.

To combat the slow data acquisition speeds of acoustic sensors, Chap-
ter 6 describes the application of directed sensing strategies. By tracking
environment targets as the vehicle moves, less data needs to be acquired,
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and the need to re-solve the correspondence problem at each iteration of
the perception cycle is obviated.

Finally, Chapter 7 concludes this work by assessing sonar’s poten-
tial in comparison with other sensors, such as the phase-based infrared
rangefinder [99], and discussing some topics for further research.



Chapter 2

A Sonar Sensor Model

The key to using any sensor is to have a good sensor model [42]. Our goal
in developing a sensor model for sonar is to support two capabilities:

• Prediction: what data should the sensor produce when observing a
known scene from a given position?

• Explanation: given observed sensor data, what is the geometry of
the scene that produced the data?

2.1 Introduction

Sonar stands for SOund NAvigation and Ranging, and was initially devel-
oped for underwater applications [130]. In this book, we use the term sonar
to describe airborne ultrasonic range sensing. We are concerned with mono-
static ranging systems, in which a single transducer acts as both transmitter
and receiver. Range measurements are obtained exclusively via time-of-
flight (TOF) information. We assume that echo amplitude information is
not made available by the sensor. We do not consider frequency modula-
tion techniques (also known as “chirping”) which have been developed for
underwater and airborne applications [58]. The sonar device we have used
is the Polaroid ultrasonic ranging system [109], the device most commonly
used by the robotics research community. A description of the properties
of airborne ultrasonic sensing and details of the Polaroid ultrasonic ranging
system are given in Appendix A.

The theory behind our approach to sonar interpretation follows directly
from the published works of Hallam [62], Brown [22], and Kuc and his
associates [83], [81], [8]. The contribution that we feel we have provided is
to bridge the gap between prediction and explanation by making clear the
differences between theory and real Polaroid sonar data. Our conclusions

13
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have been the result of acquiring, displaying, and processing a large amount
of sonar data (over 100,000 range measurements) acquired in a variety of
indoor scenes, with several different robots, over three years. This process
has been gradual. Some effects repeatedly observed in the initial stages
of our research were not sufficiently explained until two years later. As a
result of this effort, we have developed the conviction, contrary to popular
belief, that sonar is in fact a very good sensor. The aim of this chapter is to
argue why we feel sonar’s “bad reputation” is undeserved, and to provide a
framework in which real sonar data can be both predicted and explained.

2.2 Previous Work

Mobile robot navigation using sonar has been the subject of a large amount
of research over the last decade. Table 2.1 lists many of the research projects
which have used sonar. We shall refer to many of these projects through
the rest of this work.

Initially, sonar was heralded as a cheap solution to the mobile robot
sensing problem, because it provides direct range information at low cost.
However, despite some successes, most would agree that the performance
of sonar has been disappointing. The general conclusion of most previous
work is that sonar is plagued by two problems: beam width and specularity.
Figure 2.1 shows a real sonar scan taken in an uncluttered office scene.
Figure 2.2 shows the same scan superimposed on a hand-measured map of
the room. By comparing these two figures, one can see why researchers
have made the following comments about sonar:

1. Ultrasonic sensors offer many shortcomings . . . 1. poor directionality
that limits the accuracy in determination of the spatial position of
an edge to 10-50 cm, depending on the distance to the obstacle and
the angle between the obstacle surface and the acoustic beam 2.
Frequent misreadings . . . 3. Specular reflections that occur when the
angle between the wave front and the normal to a smooth surface is
too large. [13]

2. Ultrasonic range data are seriously corrupted by reflections and spec-
ularities. [38]

3. . . . the use of a sonar range finder represents, in some sense, a worst
case scenario for localization with range data. [40]

Comments like this abound in the literature on this subject. Sonar has
been widely characterized as problematic, unpredictable and unreliable.
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0.5 meters

Figure 2.1: A typical sonar scan, which we shall refer to as scan b0.

0.5 meters

Figure 2.2: The same scan, superimposed on a hand-measured room model.



16 CHAPTER 2. A SONAR SENSOR MODEL

Ref. Author(s) Sonars Key Features

[8] Barshan & Kuc Linear array Distinguish corners and planes

[9] Beckerman &
Oblow

Phased array;
δβ = 15◦

Elimination of systematic errors
in grid-type map building

[12][13]
[14]

Borenstein &
Koren

24 F Very fast obstacle avoidance;
vector field histogram method

[18] Brooks 12 F Behavior-based control

[22][24] Brown 1 R Surface tracking and recognition

[29][28] Chatila 14 F Obstacle avoidance and wall-
following

[37] Crowley 1 R; δβ = 3◦ Local composite model

[38] Crowley 24 F EKF mapping and localization

[40] Drumheller 1 R; δβ = 3.6◦ Search-based localization (relo-
cation); sonar barrier test

[45][47]
[101]

Elfes & Moravec 24 F Occupancy grid mapping and
localization

[53] Flynn 1 R; δβ = 1.4◦ Sonar-IR sensor integration

[56][49] Gilbreath et al. 35 F, 1 R Grid-type mapping

[55] Gex & Cambell 3 F, 4 R Line segment based mapping; in-
telligent sensor moves

[62] Hallam Narrow beam
underwater

Motion resolution; specular
event analysis

[69] Hu et al. 12 R On-the-fly obstacle avoidance

[77] Kriegman et al. 12 F Wall extraction; good illustra-
tion of returns from corners

[83] Kuc & Siegel 1 R; δβ = 2◦ Sonar simulation model

[82][81] Kuc 1 R Spatial sampling criterion for
collision prevention

[85] Lang et al. 24 F Experimental sensor modeling

[92] Mataric 12 F Environment learning using a
subsumption architecture

[108] Noborio et al. 1 R; δβ = 15◦ Quadtree map building

[120] Steer 9 F Position estimation from walls

[123] Stewart Underwater Multisensor modeling

[131] Walter 30 F Obstacle avoidance

[135] Zelinsky 24 F Grid-type map building

Table 2.1: A listing of representative previous work in sonar-based naviga-
tion. We use the letter R to refer to a rotating (servo-mounted) sonar, and
the letter F to refer to a fixed (static) sonar.
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2.3 Terminology

To make the ensuing discussion more precise, we first define the notation
and terminology we use to represent sonar data. Under consideration is
a robot vehicle with nS sonar sensors. The position and orientation with
respect to the local vehicle coordinate frame of sonar sensor s at time k is
the known vector bs = (x′

s, y
′

s, α
′

s(k)). A sonar sensor is considered to be
either static, in which case α′

s(k) takes a constant value, or servo-mounted,
in which case α′

s(k) takes a value in the range defined by two known limit
angles α1 and α2 such that α1 ≤ α′

s(k) ≤ α2. All servo-mounted sensors
are assumed to rotate in the horizontal plane.

Each sonar range reading generates a return, which is an ordered pair
consisting of the range value r(k) and the sensor orientation α′(k). At
time k, sensor s generates ms(k) returns. We define the vector rs

i (k) =
(ri(k), α′

i(k)) as the ith return produced by sensor s at time k. Each static
sonar generates at most one return per time step. For instances in which
the vehicle is stationary, a servo-mounted sonar can be rotated to produce
returns over a range of orientations; we shall consider these returns to occur
at the same step k of discrete time. The set of returns produced by a sonar
at time k is represented by the vector ss(k) = {rs

i (k)|1 ≤ s ≤ ms(k)},
which is termed the scan generated by sensor s at time k. The returns in
a scan are ordered by orientation in increasing fashion such that any two
consecutive returns differ in angle by the scan interval δβs(k) of the scan:

α′

i+1(k) = α′

i(k) + δβs(k)

Two returns which differ in orientation by δβs(k) are said to be adjacent.
A scan which covers a complete 360 degree rotation is termed a complete
scan. A scan which is not complete is termed a sector scan. A set of
consecutively obtained returns is termed a connected set of returns. Sector
and complete scans obtained by rotating a servo-mounted transducer to
produce two or more returns represent densely sampled data, while we refer
to scans consisting of a single return from a static or servo-mounted sonar
as sparse data. To link these concepts with real data, Figure 2.1 shows a
densely sampled, complete scan from a servo-mounted sonar. This scan has
ms = 612 returns, yielding a scan interval angle of δβs = 0.588 degrees. A
small value of δβ signifies a high sampling density.

2.4 The Physics of Sonar

We are strong believers in the arguments advanced by Brown and Kuc,
namely that the first step in using sonar must be to accept the realities of
the physics of acoustic sensing:
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Ultrasonic range sensing has met with limited success in the past for
several reasons. First, since the acoustic impedance of air is quite
low (about 415 rayls) and since typical acoustic impedances of solid
objects are much larger . . . all solid surfaces appear as acoustic re-
flectors. Also, because the acoustic wavelengths are generally quite
long (on the order of 3-5 mm), most surfaces appear to be acoustic
mirrors. Consequently, surfaces that are not orthogonal to the direc-
tion of propagation reflect signal energy away from the source, and
the surface will not be detectable. Of course, diffraction effects can
occur, but for large object surfaces the effect is negligible. [22]

These fundamental characteristics of acoustic sensing explain clearly
why the sonar scan looks so completely unlike the room in Figure 2.2.
However, these simple facts have been ignored by many in the robotics
community. Kuc writes that

problems arise in the straightforward, but naive, interpretation of
time-of-flight (TOF) readings: objects that are present are not always
detected and range readings produced by the TOF system do not al-
ways correspond to objects at that range. Because of these problems,
many researchers abandon sonar-only navigation systems . . . . [81]

The ideal range sensor in many people’s eyes would be characterized by
a pencil-thin beam and high range accuracy independent of surface re-
flectance properties. We call this imaginary sensor the ray-trace scanner.
Scans from a simulated ray-trace scanner “look good”, because they bear
a strong resemblance to the actual room map. However, acoustics dictates
that sonar scans will not have this property; sonar scans should “look bad”.
We feel that many sonar interpretation algorithms have been designed with
the expectation that sonar should provide ray-trace scanner data [37], [40],
[13]. While we do not dispute the real experimental results of researchers
who have followed this approach, we feel their successes have been limited,
because of the lack of physical justification for treating a real sonar as a
ray-trace scanner plus a large Gaussian noise source. Once we accept that
sonar scans will usually bear little resemblance to the room in which they
were taken, we have to ask: how can we use sonar?

To be useful for navigation, we must be able to predict the data a
sensor will produce from a given position, using some map. When viewed
as a ray-trace scanner, sonar seems very unpredictable. However, Kuc and
Siegel provide strong evidence that sonar scans taken in everyday indoor
environments are indeed predictable [83]. The approach they advocate is
to characterize environment features as belonging to one of two categories:
“reflecting surfaces whose dimensions are larger than the wavelength, and
diffracting objects, whose dimensions are smaller than the wavelength” [81].
Huygen’s principle is applied to generate predicted sonar data for corner,
wall, and edge targets. Real sonar scans are presented which verify the
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predictions of their model. One key conclusion from their work is that
corners and walls produce responses that cannot be distinguished from a
single sensing location. The responses from these specular targets take the
form of circular arcs in Cartesian coordinates—sequences of headings over
which the range value measured is the distance to the target. Another
conclusion they reach is that edges give rise to diffuse echoes that will be
weaker in intensity than reflections from walls or corners.

2.5 Predicting Sonar Data

The following sections develop a simplified framework for predicting sonar
data that follows, to a large extent, from the ideas of Kuc and Siegel’s
initial paper [83].

2.5.1 Target Models

We use the word target to refer to any environment feature which is ca-
pable of being observed by a sonar sensor. For our purposes, reflecting
surfaces are considered specular targets, which produce specular returns,
while diffracting objects are diffuse targets, and produce diffuse returns.
We consider four types of target: planes, cylinders, corners, and edges. As
stated in the previous chapter, we approximate the world as being two-
dimensional, and represent the environment by a map of nT targets. The
geometry of target t is described by the target parameter vector pt, which
takes a different form for each type of target:

1. Plane (refer to Figure 2.3)
A plane is a represented by a line in our two-dimensional target map,
and is defined by the parameter vector pL = (pR, pθ, pV ). We rep-
resent the line in hessian normal form [6]: pR is the minimum (per-
pendicular) distance from the (infinite) line to the origin of the global
coordinate frame, and pθ is the angle with respect to the x axis of a
perpendicular drawn from the line to the origin. A plane is visible
only from one side; an additional parameter pV , which takes the value
of 1 or −1, is used to indicate the half-plane of two-dimensional space
from which the plane is visible.

2. Cylinder (refer to Figure 2.4)
A cylinder is represented by a circular arc in our two-dimensional tar-
get map, and is defined by the parameter vector pCY L = (px, py, pR)
where px and py are the x and y coordinates of the center of the circle
in global coordinates and pR is the radius of the circle. The cylinder
radius is assumed to be greater than the sonar wavelength. Cylinders
are assumed to produce specular returns.
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Figure 2.3: Plane target model. A plane is a line target specified by
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Figure 2.5: Corner target model. A corner is a point target specified by
pC = (px, py).

3. Corner (refer to Figure 2.5)
A corner is a concave dihedral, and produces specular returns. A
corner is represented as a point in our two-dimensional map, and is
defined by the parameter vector pC = (px, py) where px and py are
the x and y coordinates of the corner defined in global coordinates.

4. Edge (refer to Figure 2.6)
An edge is a convex dihedral. Edges produce diffuse reflections. Like
a corner, an edge is represented by a point in our two-dimensional
map, and is defined by the target state vector pE = (px, py) where
px and py are the x and y coordinates of the edge defined in global
coordinates.

We shall refer to corners and edges as point targets, planes as line
targets, and cylinders as arc targets. Somewhere between the realm of edges
and cylinders fall slightly rounded convex edges with radius on the order
of the sonar wavelength; the edges of some table legs and cardboard boxes
often have this character. Our experience tells us that these produce weak
specular echoes, but the determination of their exact nature is a complex
process we leave to further research. As these reflections are weaker than
echoes from concave corners, such features are treated as weak point targets
in this book, the same as edges.
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Figure 2.6: Edge target model. An edge is a point target specified by
pE = (px, py).

2.5.2 Predicted Target Responses

In a simplified adaptation of the Kuc and Siegel model, we describe a
straightforward method here for generating predicted target responses for
each of our four target types: planes, cylinders, corners, and edges. First,
we define the position and orientation of sensor s in the global frame to
be the sensor position vector as(k) = (xs(k), ys(k), αs(k)). The vector
as(k) is related to the local sensor position bs(k) through the coordinate
transformation defined by the vehicle position x(k). We define r̂st(k) as
the true range and φst(k) as the true bearing to target pt from sensor s.
We compute r̂st(k) and φst(k) differently for each type of target using the
target parameter vector pt. For planes,

r̂st(k) = pV (pR − xs(k) cos(pθ)− ys(k) sin(pθ)) (2.1)

φst(k) = pθ (2.2)

where only positive values of r̂st(k) are valid, corresponding to the visible
side of the plane. For corners and edges,

r̂st(k) =
√

(px − xs(k))2 + (py − ys(k))2 (2.3)

tan(φst(k)) =
py − ys(k)

px − xs(k)
px 6= xs(k). (2.4)
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And for cylinders,

r̂st(k) =
√

(px − xs(k))2 + (py − ys(k))2 − pR (2.5)

tan(φst(k)) =
py − ys(k)

px − xs(k)
px 6= xs(k). (2.6)

A line target is occluded if a perpendicular drawn from the line to the
sensor intersects another target. Likewise, an arc target is occluded if a
perpendicular drawn from the arc to the sensor intersects another target,
and a point target is occluded if a line drawn from the point to the sensor
intersects another target.

In our simplified model, we assume that an unoccluded target t pro-
duces a return only if the following condition is satisfied

φst(k)−
βt

2
≤ αs(k) ≤ φst(k) +

βt

2
(2.7)

where we define βt as the visibility angle of target t. Our model predicts
that when a target is unoccluded and Equation 2.7 has been satisfied, the
range value rst(k) will approximately equal r̂st(k), the true range from
sensor s to target t. We now define the map more formally to be the set M
of target parameter vectors pt and visibility angles βt for all nT targets:

M = {pt, βt|1 ≤ t ≤ nT }. (2.8)

Qualitatively, the value of βt is determined by a target’s ability to reflect
acoustic energy—the stronger the target, the larger the target visibility an-
gle. However, to compute the precise value of βt in practice is a complex
subject that is highly dependent on the sonar hardware. In practice, our
algorithms place upper bounds on βt, rather than try to calculate explicit
values. We will discuss this subject further in the presentation of experi-
mental results in subsequent chapters.

2.5.3 Generating Simulated Sonar Scans

Equations 2.1 to 2.7 provide a simple procedure for generating simulated
sonar scans. Figure 2.7 presents an algorithm that uses these equations to
predict the sonar scan produced by a servo-mounted sonar at the location
(x, y) taking observations of an environment described by the map M with
a scan interval δβ. At a given sensor orientation, the range measurement
produced is given by the nearest range of all unoccluded targets for which
the angular visibility criterion of Equation 2.7 is satisfied. If all targets are
occluded at a given orientation, a value MAX ECHO which corresponds to
the maximum range of the sonar system is produced. The result of applying
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this algorithm with a value of βt = 30 degrees for all targets to the same
scene as Figure 2.1 is shown in Figures 2.8 and 2.9. A value of δβ = 0.588
degrees was used to yield 612 returns, as in the real scan of Figure 2.1, and
a maximum sonar range of MAX ECHO = 10 meters was used. Note that
the simulated scan is qualitatively similar to the real data of Figure 2.1.

2.6 Theory vs Practice

The sonar model proposed by Kuc predicts that in a specular environment
comprised of planes, corners, and edges, sonar scans should be comprised
of sequences of headings at which the range value measured is constant.
In reality, the world presents a complex mixture of specular and diffuse
targets. Given this fact, the next step is to try to reconcile the model
for specular environments with real sonar data. Figures 2.10 and 2.11
show plots of range vs orientation for the scans of Figures 2.1 and 2.8,
respectively. When viewed in this fashion, one can see that the dominant
features of both the real and simulated data are horizontal line segments—
sets of adjacent returns of nearly the same range. We call these sequences
regions of constant depth (RCDs), which correspond to arcs in Cartesian
coordinates.

While Figure 2.11 consists exclusively of horizontal line segments, and
hence RCDs, Figure 2.10 does not. This difference can be seen by comparing
Figures 2.12 and 2.13, which show histograms for the real and simulated
scans. In the simulated scan, range measurements of only a few values are
produced. These are the range values at which RCDs occur. For the real
data, even though the dominant features of Figure 2.10 are horizontal lines,
a wider spread of range values actually occurs. Because the real world is
a mixture of diffuse and specular echo sources, a reasonable assessment of
this situation might be that the RCDs are the specular target responses
predicted by the theory, and that the other returns are the result of diffuse
reflections not accommodated by the specular target model. We held this
belief in the initial stages of our research, but let us examine the situation
in more detail.

2.6.1 Typical Wall Responses

Figure 2.14 shows an increased resolution view of the response of the left-
hand wall of Figure 2.1. This figure displays each return as a TOF dot,
which is simply a dot placed along the sensor axis at the appropriate range
value [83]. A ray is drawn from the sensor location to the TOF dot of
every tenth return. Each return is numbered, using 0 to be the index of
the on-axis ray. Looking solely at Figure 2.14, one can see the empirical
justification for the method of fitting line segments in Cartesian coordinates
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Algorithm 3.1 (Generation of a simulated sonar scan)

procedure predict scan(x, y, δβ,M)

α← 0.0; i← 0;
while (α < 2π)

ri ← predict return(x, y, α,M);

i← i + 1;
α← α + δβ;

endwhile

num pts← i;
scan← {ri|0 ≤ i < num pts};
return scan

procedure predict return(x, y, α,M)

result← (MAX ECHO, α);
for t = 1, ..., nT

if (target visible(x, y,pt,M) = TRUE)

then

φ̂t ← bearing to target(x, y,pt);

if (( α ≥ φ̂t − βt/2) and (α ≤ φ̂t + βt/2))
then

temp← range to target(x, y,pt);

if (temp < result) result← temp
endif

endif

endfor

return result

procedure target visible(x, y,p,M)

define ray from sensor location (x, y) to target p

for t = 1, . . . , nT

if (ray intersects target p) return(FALSE)

endfor

return TRUE

Figure 2.7: Algorithm for generating a simulated sonar scan.
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Figure 2.8: Simulated sonar scan (scan sim b0), displayed by connecting
each pair of adjacent returns with a line segment.

Figure 2.9: A closer view of the same simulated scan, displayed in a slightly
different form. TOF dots are shown for every return, and rays are drawn
from the sensor location to the TOF dot of every tenth return.
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Range vs angle for sonar scan b0
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Figure 2.10: A plot of range vs transducer orientation for the scan of Figure
2.1. 612 measurements equally spaced in angle were taken. The x axis shows
the transducer orientation in degrees. The y axis shows the range in meters.
This plot shows that a large proportion of the sonar scan consists of angular
regions in which adjacent measurements have nearly the same range, and
hence form horizontal line segments (circular arcs in Cartesian coordinates.)
We refer to these features as regions of constant depth (RCDs).
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Figure 2.11: A plot of range vs transducer orientation for the simulated
scan of Figure 2.3. 612 measurements equally spaced in angle were taken.
The x axis shows the transducer orientation in degrees. The y axis shows
the range in meters.
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Figure 2.12: Histogram of range values less than 3.0 meters for sonar scan
b0, quantized in 5mm intervals.
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Figure 2.13: Histogram of range values less than 3.0 meters for simulated
sonar scan sim b0, quantized in 5mm intervals.
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followed by many previous researchers, for example, Drumheller [40]. How-
ever, Kuc’s model predicts these sonar returns should form a circular arc,
as in Figure 2.9. In Figure 2.15, we remove the line segment corresponding
to the room model, and add a circular arc drawn at the minimum range
in the response. Figure 2.16 shows a range vs orientation plot for this wall
response. Roughly, returns -19 to 22 form a horizontal line segment in this
figure, as all are within 1 centimeter of 1.015 meters, the most frequently
occurring range. This is the RCD predicted by theory. A question we want
to answer is “what about returns -26 to -35, and 30 to 39?” Are these the
result of diffuse reflections from some part of the wall that is not perpendic-
ular to the beam, or can we account for them in the context of a specular
target model?

2.6.2 A Closer Look at the Polaroid Ultrasonic Rang-

ing System

To offer an explanation for this, we need to take a closer look at the standard
Polaroid ultrasonic ranging system [109]. Figure 2.18 shows a simplified
block diagram of the electronics. The standard Polaroid ranging system
transmits 56 cycles of a 49.4 kHz square wave, yielding a total pulse duration
of 1.13 mSec. When this is the transmitted waveform, we say that the
system is operating in long-range mode. Our Robuter mobile robot comes
equipped with an additional short-range sensing mode, in which only 8
cycles of the 49.4 kHz waveform are transmitted. However, all the real
data we have shown up to this point has been obtained by our own scanning
device, discussed in Appendix A, which makes use of the standard long-
range mode of operation.

After the transmit waveform is applied to the transducer, a blanking
period follows during which no echoes can be detected, and then the trans-
ducer acts as a receiver. Detected echoes are fed into a circuit that contains
a time variable gain (TVG) amplifier to compensate for the effects of spread-
ing loss and the attenuation of sound in air. The receiver amplifier output
is then fed into a thresholding circuit, and the time-of-flight measurement
is obtained by taking the difference in time from when the beginning of the
pulse was transmitted to the first time at which the threshold is exceeded.
An appropriate calibration factor is then applied to convert this time value
into distance.

We wish to address three particular sources of error in the Polaroid
ranging system which can explain the formation of the typical wall response
shown above:

1. Transmitted pulse duration
All timing is based on the assumption that the start of the transmit-
ted pulse is the part of the returned echo that actually exceeds the
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Figure 2.14: Typical wall response 1. TOF dots are shown for every return,
and rays are drawn from the sensor location to the TOF dot of every tenth
return.
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Figure 2.15: Typical wall response 1. An arc is drawn at the range of the
closest return in the wall response.
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Figure 2.16: Typical wall response 1: range vs orientation plot for left wall
in scan b0.
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Figure 2.17: Main-lobe and first side-lobes of the plane circular piston
radiation pattern.
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Figure 2.18: The Polaroid ultrasonic ranging system.

detector threshold. If some other part of the transmitted pulse trips
the threshold, the error could be as much as 19 centimeters.

2. Time variable gain (TVG) Amplifier
The Polaroid TVG amplifier only makes a 16-step approximation to
the ideal exponential curve that would exactly cancel beam spread
and attenuation losses. Further, the TVG response would need to
accommodate the complex fashion in which the attenuation of ultra-
sound in air changes with temperature and humidity. The result of
this limitation is to make the visibility angle βt of target t a complex
function of range, humidity, and temperature. The effect is the same
as if the threshold were a sawtooth-varying function of range. This
effect is clearly demonstrated in the published experimental work of
Lang et al. [85].

3. Capacitive charge-up in the threshold circuit
The mechanism by which thresholding is actually carried out involves
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a capacitive charge-up, whose impact can be a significant source of
error when a long pulse duration is used. For strong reflected signals,
just 3 cycles are necessary for charging up to threshold. Calibration
usually accommodates this short charge-up time. For weaker signals,
charge-up can take place over a considerably longer time, resulting in
an erroneously elongated range value.

For a specular surface, the perpendicular portion of the wall is the
only part of the wall that reflects sound energy directly back to the trans-
ducer. Hence, whether detection occurs or not depends on the amount
of sound energy perpendicularly incident on the wall, which is a function
of the transducer radiation pattern. A model often used to characterize
transducers of the Polaroid type is that of a plane circular piston in an
infinite baffle [91]. Using values of transducer radius and transmission fre-
quency appropriate to the Polaroid sensor, the complete radiation pattern
is plotted in Appendix A. Here we just show the main lobe and the first
side-lobes, plotted in Figure 2.17, with the x axis labeled not in degrees but
by return index to correspond with Figures 2.14 to 2.16. While the piston
model is a simplification, it does reflect the nature of the actual Polaroid
beam pattern.

The three error sources listed above, coupled with this knowledge of the
sonar radiation pattern, provide a simple explanation for the wall response
of Figures 2.14 to 2.16. At nearly orthogonal sensor orientations (returns
-18 to 18), the perpendicularly incident energy comes from the main lobe,
and hence the range value measured is very accurate. At the edges of the
main lobe, range accuracy degrades slightly, until the wall disappears for
returns -25 to -20 and 23 to 29, which correspond to nulls in the sonar beam
pattern. At these sensor orientations, the incident energy is sufficiently
weak that detection does not occur. As the sensor is rotated further away
from the wall, the perpendicularly incident energy increases as the side-
lobes come into view. However this energy is not strong enough to trip the
detector threshold promptly. Detection comes through a charge-up action
whose duration is proportional to the radiation energy that is currently
perpendicularly incident. In Figure 2.16, the most severely delayed return
that is still detected is return 26, which has a range of 1.068 meters, which
is 5.3 centimeters longer than the mode of the response.

To answer the question we posed earlier, returns -26 to -35 and 30 to
39 of Figures 2.14 to 2.16 are in fact due to specular reflections. Because
of the errors sources listed above, when the perpendicularly incident sound
is low in intensity, range accuracy suffers. These effects reveal themselves
in wall responses over and over again in environments with ordinary walls.
As evidence of this, Figure 2.19 shows three other typical wall responses.
Figure 2.19 (a) and (b) show the same wall as in Figures 2.14 to 2.16,
viewed from the same distance but from a position 0.5 meters closer to
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the bottom wall. Figures 2.19 show this same wall viewed from a position
0.71 meters further away. Figure 2.19 (c) and (d) show the top wall in the
original sonar scan. Figure 2.20 through 2.22 show range vs orientation
plots for these wall responses, with each return cross-referenced to Figure
2.19. Understanding these pictures provides an intuitive understanding of
the way in which the Polaroid ranging system actually operates.

2.6.3 Strong vs Weak Returns

We call those errors which occur at high angles of incidence time-delay range
errors. Note that this effect is non-symmetric, and hence not Gaussian.
The range measurement can be up to 19 centimeters too far, while usually
not more than 1 centimeter too close (depending on the manner in which
the system is calibrated). Lang et al. present remarkable error distribution
plots which clearly detail this effect [85]. To put our knowledge of these
errors to use for interpreting sonar data, we divide sonar returns into two
classes:

1. Strong returns possess sufficient energy to exceed the threshold
circuit promptly, and hence are very accurate in range (within 1 cen-
timeter).

2. Weak returns are characterized by time-delay range errors. These
only surpass the detector threshold by the effect of a long charge-up
in the threshold circuit and changing gain steps in the TVG amplifier.

It is not possible to classify a single isolated return as strong or weak
based solely on time-of-flight information. One solution for this problem is
to use a short-range sensing mode only, since the short duration of the
transmitted pulse makes the maximum time-delay range error just 1.5
centimeter.1 Since our Robuter mobile robot sonar system has a short-
range mode, this is the approach we adopt for the localization experiments
presented in Chapter 3. For high range accuracy we recommend exclu-
sive use of the short-range sensing mode. Despite this recommendation,
the densely sampled scans shown in this chapter and used in Chapter 4
for map building use the standard, long-range Polaroid system, and thus
possess many weak returns. Most previous researchers have also used the
standard, long-range mode. For long-range mode sonar, our approach to
interpretation is to identify strong returns using the concept of local support
to extract RCDs.

1This is calculated assuming a transmitted waveform of 8 pulses, and a charge-up
time of 3 pulses for strong echoes in the threshold circuit, yielding a worst-case where
the threshold is exceeded 5 pulses too late, after the 8th pulse.
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Figure 2.19: Several other typical wall responses. (a) scan and room model
for wall response 2. TOF dots are shown for each return, and rays are drawn
from the sensor location to the TOF dot of every tenth return. (b) An arc
is drawn at the range of the closest return of the wall response, illustrating
the effect of time-delay range errors at high angles of incidence. Likewise,
(c) and (d) show wall response 3, and (e) and (f) show wall response 4.
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Figure 2.20: Typical wall response 2: range vs orientation plot for left wall
in scan e0.
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Figure 2.21: Typical wall response 3: range vs orientation plot for top wall
in scan b0.
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Figure 2.22: Typical wall response 4: range vs orientation plot for left wall
in scan b3.

2.7 Regions of Constant Depth

The above discussion advanced a qualitative argument to the effect that
a specular sonar model predicts that sonar scans will consist of RCDs,
which are formed by strong returns. Weak sonar returns which do not form
RCDs can be explained by undesirable characteristics of the standard sonar
hardware. Based on the assumption that the information content in a sonar
scan is conveyed by the RCDs, we now formalize the notion of an RCD, and
describe a straightforward process for extracting RCDs from sonar scans.

2.7.1 Extracting RCDs

The range difference of a connected set of returns is defined to be the abso-
lute value of the difference between the minimum and the maximum value
of the set. The range difference of two returns is simply the absolute value
of their difference. We define δR to be the range difference threshold. A
Region of Constant Depth is a connected set of returns with range differ-
ence less that δR. A return whose range difference with each of its adjacent
returns is greater than δR defines a single element RCD. The range of an
RCD is taken to be the mode of the distribution of range values across
the RCD. The width β of an RCD is the difference in angle between the
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Figure 2.23: Regions of constant depth (RCDs) of width β ≥ 10 degrees
extracted from scan b0. The order of each RCD has been labeled. We
can see 4 1st-order RCDs from the four walls of the room, 3 2nd-order
RCDs from corners, and a single 4th-order RCD resulting from a multiple
reflections off the top wall into the lower right-hand corner of the room.
There is a single 0th-order RCD resulting from a weaker reflection from the
edge in the lower right-hand region of the room.
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left-most return and the right-most return of the RCD. Figure 2.23 shows
RCDs of width β ≥ 10 degrees from the sonar scan of Figure 2.1 using a
range difference threshold of 1 centimeter.

2.7.2 Constraint Angles of an RCD

A single isolated return is characterized by a uniformly distributed uncer-
tainty in the true bearing to a target of up to 30 degrees, depending on
target strength. RCD extraction provides a means of reducing this angular
uncertainty, as multiple adjacent returns to the same target constrain the
possible true bearing to the target. For each RCD, we define a series of
angles to constrain the true bearing to a target. We define θ1 to be the
angle of the right-most return of the RCD, and similarly, θ2 to be the angle
of the left-most return of the RCD. θm is the orientation of the RCD, which
is simply the mean of θ1 and θ2:

θm =
θ1 + θ2

2
. (2.9)

As discussed above, an unfortunate side-effect of the limitations of the
Polaroid ranging system is the difficulty in specifying the visibility angle
βt of target t. The approach we take is to choose a value called βmax,
which will be greater than the maximum value of βt for all targets in the
environment. We have used βmax = 30◦ in our experiments, as discussed in
subsequent chapters. Based on this value, we define two constraint angles
for each RCD:

θu = θ1 +
βmax

2
(2.10)

θl = θ2 −
βmax

2
(2.11)

where θu is termed the upper constraint angle of the RCD, and θl is the
lower constraint angle of the RCD.

Figure 2.24 illustrates these different angles for the case of a wide RCD,
showing the way in which multiple returns of the same range reduce the
range of the possible bearing to the target. Figure 2.25 shows the values of
these angles for the RCD defined by an isolated single return. In this case,
uncertainty in the true bearing to the target takes the full value of βmax.
These angles are used in Chapter 3 in the process of matching a predicted
RCD to an observed RCD, and in Chapter 4 for matching multiple RCDs
observed from different locations based on different target assumptions.

2.7.3 Local Support

The notion of echo strength, and its impact on range accuracy, was quali-
tatively described above in terms of the Polaroid hardware. Strong echoes
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Figure 2.24: Constraint angles for a five element RCD.
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Figure 2.25: Constraint angles for a single element RCD.
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promptly trip the threshold of the receiving circuit, giving an accurate dis-
tance measurement. Weak echoes do not possess sufficient energy to charge
the detection circuit quickly up to the threshold level; the threshold is only
exceeded by the random combination of a slow charging-up period and
jumps in the non-linear time variable gain amplifier. The significant time
delay that has occurred causes an erroneously elongated range reading. As
supported by our experimental results and the experimental evidence of
others [85], repeated firing at an orientation that results in a weak echo
gives a considerably wide spread of actual time-of-flight readings, in con-
trast to the repeatable, tight distribution of strong echoes.

When the Polaroid hardware is operated in long-range mode, weak re-
turns are a significant source of range error. The process of RCD extraction
provides a mechanism for determining the strength of an echo which yielded
a return, when densely sampled data is available. The uncertain process
by which weak returns are produced means that if the sensor is slightly
rotated in either direction, the range can change considerably. In contrast,
the well-defined nature in which strong echoes exceed the receiver thresh-
old means that the range will not change significantly for small changes
in sensor orientation. To formalize this concept, the local support index of
a return is defined to be the number of returns in the RCD to which the
return belongs. The local support angle of a return is the width of the RCD
to which it belongs (zero for a return with local support index of one). A
weak return is defined to be a return with local support angle less than
a pre-defined threshold βmin. Typical values we have used for βmin are
between 5 and 10 degrees. A strong return is a return with local support
angle greater than or equal to βmin.

2.7.4 The Order of an RCD

Figure 2.2 shows that in a typical indoor scene, many “false” range readings
are produced by the system when the beam is oriented at high angles of
incidence to planar targets. At these high angles of incidence, the sound
energy emitted from the side-lobes of the beam that strikes the wall perpen-
dicularly is not of sufficient strength to exceed the threshold of the receiving
circuit. As a result, the first echo detected by the system is a multiple re-
flection by some other part of the beam reflecting specularly off the wall
to some other target and then back. These multiple reflections have been
observed by many other researchers, and have commonly been referred to
in the literature as “specularities” [38]. We feel this term is misleading,
because most accurate, strong returns produced by planes and corners are
in fact due to specular reflections.

To alleviate this confusion, we define the order of a return as the number
of surfaces the sound has reflected from before returning to the transducer.
Orienting the transducer perpendicular to a planar surface such as a wall
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produces a 1st-order return. Corners produce 2nd-order returns, because
the sound has reflected specularly off two surfaces before returning back
to the transducer. Multiple reflections will produce 3rd- and higher-order
returns. A crucial task in interpretation is to eliminate these higher-order
reflections which, if taken to be the distance to the nearest object, yield
false range readings. To incorporate diffuse edges in this terminology, weak,
diffuse reflections resulting from edges will be defined as 0th-order returns.
All returns in an RCD are assumed to have the same order, and so the
order of an RCD is the order of each of its returns.

2.8 Sparse vs Densely Sampled Data

In the literature, rings of fixed sonars around the vehicle perimeter have
been the most popular sonar sensing configuration. Circular rings of 12
or 24 transducers seem to be the most common, but as many as 30 trans-
ducers have been used [131]. A circular ring of 24 sonars has an angular
spacing between transducers of 15 degrees. Unfortunately 30 degrees is
about the upper limit on target visibility angles. (Actually side-lobes are
visible outside this angular window at some ranges, but these are usually
weak returns.) Thus there is a good chance that with a ring of 24 sonars,
many targets will be observed by only one sensor. With long time dura-
tion pulses, there is little means of knowing whether an individual return is
strong or weak. For this reason, the bottom-up data interpretation capa-
bilities of typical sonar rings seem limited when long-range sensing modes
are used.

The data produced by a ring at a given position can change drastically,
depending on the vehicle orientation, as shown in Figures 2.26 and 2.27.
To imitate a 12 transducer ring with real data we have shown before, Fig-
ure 2.26 shows the result of sampling every 51st return from the scan of
Figure 2.1, with two different offset values to illustrate a change in vehicle
orientation of about 13 degrees. The offset value for Figure 2.26 (b), (d)
and (f) has the particularly drastic effect of making the top and left walls
invisible, as each transducer happens to line up in the null between side-
lobe and main-lobe. Figure 2.27 shows the considerable improvement of a
24 element ring, but some drastic changes are still observed. These pictures
do not account for the effect that a non-zero vehicle radius would have on
the data produced.

For localization in known environments, the sparse data of multiple
static sonars is adequate for on-the-fly position estimation. However, when
map building is also a requirement, the lack of local support makes data
interpretation more difficult. Short duration transmitted pulses ease this
situation somewhat, as weak returns are eliminated, but comparison of
typical target visibility angles and ring spacings shows that it is difficult
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(e) (f)

(d)(c)

(a) (b)

Figure 2.26: The effect of a change in vehicle orientation on the data pro-
duced by a 12 transducer ring. Every 51st return of the original 612 point
scan is displayed. (a) and (b) show the 12 returns for offset values of 0 and
22 returns, respectively. The latter value was specifically chosen to give
disastrous effect. (c) and (d) show the superposition of the room model,
while (e) and (f) show the superposition of the entire 612 point scan.
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(e) (f)

(d)(c)

(a) (b)

Figure 2.27: The effect of a change in vehicle orientation on the data pro-
duced by a 24 transducer ring. Every 25th return of the original 612 point
scan is displayed. (a) and (b) show the 24 returns for offset values of 0 and
12 returns, respectively. (c) and (d) show the superposition of the room
model, while (e) and (f) show the superposition of the entire 612 point scan.
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to get two or more returns that correspond to the same target. The sub-
ject of choosing scanning densities to assure target visibility has been given
extensive treatment by Kuc and his associates in the pursuit of 100% re-
liable collision prevention [82], [81]. With regard to our localization and
map building requirements, a ring does allow many returns to be acquired
quickly, but these returns will not have local support, and targets of interest
will not necessarily be observed.

2.9 Discussion

Ironically, weak returns make sonar scans “look better”, if the expectation
one possesses of what a scan should look like is that of a ray-trace scanner.
This effect is clearly visible in Figure 2.19 (c), in which returns 32 through
36 receive just enough time-delay to place them at the true range to the wall
along the beam axis. The co-linearity of the returns in this wall response
is simply coincidental, for they are produced exclusively by reflections off
the perpendicularly incident part of the wall.

It seems that the presence of these weak returns will improve the per-
formance of algorithms that fit line segments to sonar returns [37], [40],
[77]. However we feel the physics of sonar clearly dictates that fitting line
segments to the returns of a single scan is not advisable. We do not dis-
pute the results of previous researchers; rather, our point is that superior
performance should be possible with an RCD-based scheme. Our experi-
ence has been that time-delay side-lobe effects are much more common for
planes than other target types, and thus the target response of a plane will
“look” much more like a line than will the response of a corner, but we see
it as unavoidable that line segment-based routines will inadvertently fit line
segments to corner responses.

We feel that the occurrence of weak returns has disguised the reality of
the acoustic ranging process, and has contributed to some misconceptions
held by previous researchers. For example, many report that sonar gives
the distance to a planar target along the beam axis until some “critical
angle” [40] where a specular reflection occurs. Many failed to realize that
the physics of sonar dictates that all reflections produced by smooth planar
targets are in fact specular reflections. (Thus our insistence that multi-
ple reflections should not be called“specularities” [38], [122].) Although
hardware details are not given, it seems clear to us that Kuc and Brown
use transmitted pulses of short duration, and thus weak returns are not
produced by their hardware. We feel this reconciles the difference in ap-
pearance of Kuc’s scans with those of most other researchers, and is perhaps
why some have been slow to acknowledge the consequences of his work.
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2.9.1 Previous Work Revisited

The method of many previous researchers suggests that they regard the
Polaroid sensor as a poor approximation to the ray-trace scanner that they
really want. Sonar cannot provide this type of information, but it can
provide accurate, easy-to-use range measurements. RCDs are what the
Polaroid transducer is trying to tell us: precise distance measurements to
strong acoustic targets. The rest of the scan results from weak reflections
that are inaccurate in range because of limitations in the standard Polaroid
electronics.

We stated above that a consequence of acoustics is that a single sonar
scan should “look bad”, that is, it will look very different to a map of the
room in which it was taken. Sonar scans with the unmodified Polaroid
ranging system will in fact bear a resemblance to a room map if many cor-
ner targets lie along the walls of the room. For example, “Exposed studs
that provide excellent beam return properties” lining the walls of the room
explain the “exceptional quality” of the scan shown by Everett [49]. In
our approach, these studs each define their own corner targets. To remove
false multiple reflections, some researchers have artificially added acous-
tic targets to the environment. For example, Steer has developed acoustic
retro-reflectors, that a user could place along the smooth surfaces of a room
to provide a large number of corner targets and thus make false multiple re-
flections unlikely [122]. One drawback of such a technique is that modifying
the environment may be undesirable. More importantly, we believe that
since the fundamental enemy is the correspondence problem, adding a mul-
titude of acoustic targets makes achieving correspondence between observed
data and environment targets more difficult. Indeed, we believe the power
of acoustic sensing is that typical environments present many fewer acous-
tic targets than optical targets, and hence, overcoming the correspondence
problem should be considerably easier with an acoustic sensing modality.
From the standpoint of localization, the specularity of the environment is
a feature, not a bug.

We feel that when using sonar, maps should consist of target locations
for all target types: corners, edges, planes, and cylinders. We acknowl-
edge that this increases the map complexity in comparison to other ap-
proaches, like that of Drumheller [40], whose maps consist of line segments
that crudely approximate the room geometry. For this reason, we believe
feasible navigation is only possible when the map is autonomously built
and maintained.

Drumheller took his scans at the unusual height of five-and-a-half feet,
and his rooms appear to contain a large number of bookcases at this height.
The corners defined by the books in a bookcase present a large number of
corner targets, and thus false multiple reflections appear to occur less fre-
quently in his data than in our data. Our approach would treat each of these
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corners as an individual target, an obviously complex procedure, but in our
defense we argue that at the lower heights at which we would mount our
sensors, less features like bookcases and curtains would be visible. Lower
to the floor, empty wall spaces and chair and table legs would be frequent
targets in many application environments; these are spatially isolated.

2.9.2 Limitations

However the issue of environment complexity must be addressed as a po-
tential limitation to our approach. We advocate that the complexity of the
environment must be directly confronted. This will be easier in simple en-
vironments such as a corridors with smooth walls. This is in almost direct
contrast to previous approaches which succeeded in complex environments
characterized by a high target density, but which would have failed in an
empty corridor. We acknowledge the danger to our approach posed by en-
vironment complexity, but counter that the idea behind tracking geometric
beacons, discussed in Chapter 3, is to capitalize on the sensor data which is
easiest to associate with the correct target. Part of the question of “is this
a good beacon?” is “how far away is the closest target?” The more isolated
a target is, the easier it will be to associate observations with it correctly.
Thus, a measure of local target density seems a good criterion for choosing
beacons, but we have not automated this decision at this point.

We are aware that in this chapter we have largely ignored the wave
nature of sound. Instead we consider the sonar beam to consist of rays of
emitted energy, and trace these rays as they bounce around a “world of
mirrors”. This is obviously an over-simplification of the complex physical
process at work [103]. However, we feel that from the standpoint of pre-
dicting and explaining real sonar data in air, the model put forth here is
sufficient to achieve effective mobile robot navigation, as we aim to demon-
strate in the following chapters.

Rough surfaces characterized by irregularities on the order of the sonar
wavelength can indeed reflect sonar energy directly back to the transducer
at high angles of incidence for which our model would predict a multiple
reflection. This is a limitation of the model, but we note that at nearly
perpendicular angles of incidence, the range value produced will still be
the orthogonal distance to the wall, and hence can be accurately predicted.
While we cannot predict all returns in environments of rough surfaces,
we can predict a significant subset of possible returns, and use these to
provide localization. Our implementations with the Oxford Robuter, to be
presented in Chapter 3, succeed in an environment of painted brick surfaces
in just this manner.

In general, the consideration of sonar’s viability in comparison with
other sensors must address the following issues.
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1. Slow data acquisition speeds
Because of the speed of sound, sonar is drastically slower than optical
alternatives such as laser and active infrared rangefingers [67], [99].

2. Moving vehicle effects
When sensing from a moving vehicle at high speeds, the assumption
that the transducer had the same position in space for both transmis-
sion and reception is no longer valid.2

3. Three dimensional effects
Three-dimensional effects, such as the observation of the horizontal
edge of a table, will be unavoidable in many application environments.
These effects increase with range.

These limitations will be discussed is subsequent chapters in the context
of our navigation results and our plans for future research.

2.10 Summary

We present the following conclusions to summarize this chapter:

• The ideal sonar sensor would not approximate the ray-trace scanner,
but would provide precise range measurements to targets in the en-
vironment over a wide range of viewing angles. In the man-made,
indoor environments under consideration in this monograph, these
targets are planes, cylinders, corners, and edges.

• Local support makes sonar data interpretation easier, by providing a
means of distinguishing accurate strong returns from inaccurate weak
returns, and of constraining the uncertainty in the orientation to a
target.

• The identification of multiple reflections is a crucial task in the inter-
pretation of sonar data.

• Because sonar can be predictable and accurate, we believe sonar does
not deserve its bad reputation!

2This situation is analogous to bi-static radar [113], in which a separate transmitter
and receiver are used instead of a single, dual-purpose antenna. We feel techniques from
this field will be of use in analyzing this situation.
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Chapter 3

Model-based Localization

Localization is the process of determining the position of the robot with
respect to a global reference frame. Our objective here is to achieve compa-
rable performance to commercially available artificial beacon systems [128]
without modifying the environment, by using the naturally occurring struc-
ture of the environment.

3.1 Introduction

First, let us clarify our terminology. Drumheller has used the term absolute
localization to signify “the enabling of a mobile robot to determine its posi-
tion and orientation ... in a way that is independent of assumptions about
previous movements” [40]. Using line segments as features, Drumheller de-
veloped a search procedure for determining the robot’s position based on
the interpretation tree of Grimson and Lozano-Pérez [60]. We feel the use
of search to answer “where am I?” is not opportunistic enough for an or-
dinary mode of operation. Because our goal is the continual provision of
accurate knowledge of position, a priori position estimates should be fairly
good. Hence, our use of the term localization refers to an ordinary, continu-
ous mode of operation that avoids search. We shall use the term relocation
(a word we adopt from orienteering [96]) to describe search-based posi-
tion determination. This is only used in our approach for initialization and
recovery from “getting lost”. These two classifications define a spectrum,
from opportunistic use of a priori position estimates to freedom from re-
liance on such estimates. Either can be viewed as too extreme, the former
susceptible to getting lost, the latter overly pessimistic because the vehicle’s
position will be constrained by the previous position estimate and distance
traveled since that position. A desirable goal is an algorithm which starts
from the a priori estimate, but can successively expand its search, moving

51
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toward the consideration of all possible vehicle locations. We must leave
this task, however, for our future research agenda.

3.1.1 Previous Work in Localization

The localization system implemented by Cox, using the robot Blanche, fits
our definition of continuous localization [33]. Position updates are produced
by a matching algorithm that uses an initial estimate of vehicle position
from odometry to launch an iterative registration procedure. The sys-
tem senses the environment using a phase-based infrared range scanner to
achieve on-the-fly performance. Hinkel et al. present a novel localization
technique which capitalizes on the high data acquisition speed of their laser
range scanner [65] [67]. Position estimation is performed using histograms.
The approach seems to rely on Manhattan geometry environments, such
as corridors, but successful results are claimed for more complex domains.
Both of these optically motivated approaches would seem to have limited
application with sonar, because of sonar’s slow data acquisition speed, and
the dissimilarity of sonar data to optical rangefinder data.

In computer vision, Sugihara [124] and Krotkov [80] address visual
position estimation as a search-based relocation procedure using vertical
line segments as features. Implementation of this concept has not been
extensively developed. Sarachik presents an alternative to more traditional
computer vision approaches that avoids three-dimensional modeling and
calibration by the use of a novel camera configuration that can extract
ceiling-wall boundaries [112].

Using grid-based representations, localization has been implemented
via the correlation of a local occupancy grid with a globally-referenced
occupancy grid constructed earlier [45] [100]. Extensive quantitative per-
formance results have not been published. We believe that more reliable
performance should be possible with a feature-based approach, as it allows
one to predict the sonar data that will be obtained from a given position.

3.1.2 Model-based Vision

The localization problem is related to model-based vision, an approach to
visual object recognition that has been advocated by Lowe [90], Mundy [32],
and others [59]. The aim of model-based vision is to recognize an object in
the environment based on an a priori model, and to determine the position
and orientation of this object relative to the observer. The recognition
process is fundamentally a search through prior information; the goal of
visual processing is to provide constraints to guide this search to find the
correct orientation and position of the object as quickly as possible.

This top-down approach conflicts with one traditional approach to vi-
sion, that first builds an intermediate representation called the 2 1/2-D



3.1. INTRODUCTION 53

sketch bottom-up from the data, using a variety of visual cues such as
stereo, motion, and shape-from-X, before attempting correspondence with
a priori models. Lowe has argued strongly that in many instances, the in-
termediate representation of the 2 1/2-D sketch does not sufficiently aid the
task of visual recognition to warrant the time needed for its construction.
Further, uncertainty introduced in the depth and shape computation, for
example the result of stereo matching errors, can significantly hinder the
recognition process. Correspondence between the 2-D image and the 3-D
geometric model is often better achieved without recourse to an intermedi-
ate representation.

Lowe’s SCERPO vision system has inspired our advocacy of a model-
based approach to localization. We view localization as a task of achieving
correspondence between observations and an a priori model. The construc-
tion of intermediate representations, such as an occupancy grid or compos-
ite local model, may be useful for obstacle avoidance, but does not directly
aid the achievement of correspondence with a global model, and the “blur-
ring effect” they produce can in fact hinder this process. Because of sonar’s
slow data acquisition rate, the considerable length of time needed to con-
struct a local map and then match this local map with a global map will
make continuous localization impossible. With a model-based approach,
the directed observation of just a few environment features can swiftly pro-
vide position information. Subsequent tracking of these features obviates
the need to re-solve the correspondence problem, thus making possible a
high bandwidth stream of reliable and useful information.

3.1.3 Motion Estimation vs Position Estimation

The fields of study in computer vision known as motion and structure from
motion are closely linked to mobile robot navigation. Two classes of al-
gorithm are generally employed: optic flow-based and feature-based [50],
[107]. In this discussion we only address the latter approach. Research in
feature-based motion analysis aims to compute scene structure and observer
motion by matching features observed in one, two, or three images from one
observer location with features observed in images from the next observer
location. Many approaches make use of the extended Kalman filter (EKF)
for recursive feature estimation [5], [4], [93], [110], [78].

Ayache and Faugeras have pioneered the use of trinocular vision to es-
timate the camera motion between observed scenes and to build detailed
global maps [5], [4]. Processing is based on a “points, lines, and planes”
model of the environment. Matthies has implemented an EKF-based al-
gorithm that computes observer motion and maintains and refines a local
model of the coordinates of stereo points used for matching [93]. In both of
these formulations, strong emphasis is placed on an accurate model of sensor
errors. Kriegman achieves hallway navigation by stereo tracking of vertical
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edges, again employing an EKF to merge stereo correspondence points pro-
jected onto a 2-D model [78]. Semantic hallway models that indicate the
relative location of doors and walls have been constructed. Instantiation of
the semantic model is used to execute high-level commands such as “Enter
the second door on the left”. Processing is done by TV transmitter and
radio link to an off-board host, and with a typical complete cycle time of
8 to 12 seconds for each 1 meter step of the robot. In a similar approach,
Wells has implemented a system in which vertical edge tracking is achieved
in corridors using on-board computation [133].

These researchers have attacked the motion problem without an a pri-
ori model, a considerably more complex task than localization with prior
information. Motion estimation, however, does not by itself fulfill our re-
quirements for long-term autonomous localization. The distinction lies in
the formulation of the problem. Multiple EKFs are set up to estimate tar-
get locations, but there is no Kalman filter for the vehicle. Matches between
features observed from two positions are used to compute an accurate es-
timate of the transformation between the vehicle position at times k and
k + 1. An estimate of position with respect to a global frame comes indi-
rectly by adding this transformation to the vehicle’s prior position. Because
each successive motion estimate will contain some uncertainty, the error in
the global position estimate must gradually increase, in similar fashion to
the errors of odometry, but smaller in magnitude. Because of this gradual
accumulation of error, it seems that maintaining globally consistent world
models across long time spans is not possible solely with motion estimates.
This is clearly evident in the work of Matthies [93], Wells [133], and Krieg-
man [78], where global geometric consistency is not achieved. The results
of Ayache and Faugeras [5] appear globally consistent because of the high
accuracy of the calculated motion estimates, but results for long time span
runs have not, to our knowledge, been presented.

We feel that after modeling is sufficiently underway, a change in strat-
egy needs to be adopted. At a certain stage, the focus of the estimation
problem should be shifted from map construction to position, not motion,
estimation. The distinction is one of map using instead of map fusing. The
comments of Pollard et al. are insightful in this regard:

In the context of control of a mobile robotic vehicle it is important to
distinguish between the twin goals of obtaining an accurate model of
the environment and determining the current position in it. . . . The
visual through-put and temporal response required by each task is
very different. [110]

Map using presents the possibility of more efficient operation. A robot
needs to say “that’s it, my map is good enough, now my priority is to use
the map to operate as efficiently as possible.” Verification and maintenance
of the map are still required, but should entail less computation than map
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construction.

3.2 Problem Statement

We use the word target to refer to any object feature in the environment
that can be observed by one of the robot’s sensors. Target models were
presented in the previous chapter for planes, cylinders, corners, and edges.
We use the term geometric beacon to designate a special class of target that
is a stable environment feature useful for localization. The target state
vector pt contains the geometric parameterization of target t with respect
to a global reference frame. At this point in our discussion, we assume
all targets to be stationary, so that the target state pt of target t is not
a function of time. We stress that the map is just a set of target state
estimates, not an exhaustively detailed world model. For the localization
algorithm presented here, the map is provided a priori to the algorithm, and
the target estimates that comprise the map are assumed precise. Chapter
4 addresses the construction of such a map.

With reference to Figure 3.1, we denote the position and orientation
of the vehicle at time step k by the state vector x(k) = [x(k), y(k), θ(k)]

T

comprising a Cartesian location and a heading defined with respect to a
global coordinate frame. At initialization, the robot starts at a known
location, and the robot has an a priori map of nT geometric beacons, whose
locations are specified by set of the known vectors {pt | 1 ≤ t ≤ nT }.
Localization is a cyclic procedure that is repeated as frequently possible. At
each time step, observations zj(k+1) of these beacons are taken. The goal of
the localization extended Kalman filter is to associate measurements zj(k+
1) with the correct beacon pt to compute x̂(k + 1 | k + 1), the updated
estimate of vehicle position.

The Kalman filter relies on two models: a plant model and a measure-
ment model. We next discuss each of these in detail.

3.2.1 The Plant Model

The plant model describes how the vehicle’s position x(k) changes with
time in response to a control input u(k) and a noise disturbance v(k), and
in general has the form

x(k + 1) = f (x(k),u(k)) + v(k), v(k) ∼ N(0,Q(k)) (3.1)

where f(x(k),u(k)) is the (non-linear) state transition function. We use the
notation v(k) ∼ N(0,Q(k)) to indicate that this noise source is assumed to
be zero-mean Gaussian with covariance Q(k) [54].

The model we have used is based on point kinematics [114]. The control

input u(k) = [T (k),∆θ(k)]
T

is a translation forward through the distance
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Figure 3.1: Localization by concurrent tracking of several beacons. The
vector x(k) = (x(k), y(k), θ(k)) is the vehicle’s position and orientation at
time k. Four geometric beacons are in view to a servo-mounted sonar at
time k and time k + 1: plane p1, corner p2, plane p3, and cylinder p4.
The sonar measurements z1(k) and z3(k) are the shortest distance from
the sensor to planes p1 and p3 at time k. The measurement z2(k) is the
distance from the sensor to corner p2 at time k. Measurement z4(k) is the
distance to the central axis of cylinder p4 less the radius of the cylinder.
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T (k) followed by a rotation anti-clockwise through the angle ∆θ(k). The
state transition function f(x(k),u(k)) has the form [114]:

f (x(k),u(k)) =





x(k) + T (k) cos θ(k)
y(k) + T (k) sin θ(k)

θ(k) + ∆θ(k)



 . (3.2)

More sophisticated vehicle kinematic and dynamic models have been
presented in the literature, such as those provided by Muir [106], Steer [121]
and Alexander [1]. The point kinematic model has proven adequate in
our experiments, and we feel its use is justified because our concern rests
with the perception issues of position estimation. However, we do see the
next step after position estimation to be position control, and even velocity
control, with perception “in the loop”. Provision of these capabilities would
necessitate a more detailed plant model.

3.2.2 The Measurement Model

The robot is equipped with nS sonar sensors. The position and orientation
of sonar sensor s in the vehicle coordinate frame is given by the sensor posi-
tion vector bs(k) = (x′

s, y
′

s, α
′

s(k)). Perfect knowledge of bs(k) is assumed
to be available. When static sonars are used α′

s is constant, and hence
bs(k) is not a function of time; for convenience, time indices will often be
dropped when this is the case. The values of bs(k) for our vehicles are
given in Appendix A. The raw sensor data from sensor s at time k takes
the form of a scan Ss(k) = {ri(k)|1 ≤ i ≤ ms(k)} as described in Chapter
2. This raw sensor data goes through the process of RCD extraction de-
scribed in Section 2.7 to yield nO observed RCDs, which comprise the set
of observations

Z(k) = {zj(k)|1 ≤ j ≤ nO}. (3.3)

Because of the high angular uncertainty associated with an RCD, only
the range of the RCD is used explicitly in this formulation. Orientation
information is used in the matching algorithm, but not for computation of
the vehicle position. Thus, each observation is the range associated with
an RCD, defined in Chapter 2 to be the mode of the elements of the RCD.
Note that an RCD can comprise just a single return, making our formulation
equivalent for dense and sparse data.

The measurement model relates a sensor observation to the vehicle
position and the geometry of the target that produced the observation, and
has the form:

zj(k) = hst (x(k),pt) + wj(k), wj(k) ∼ N(0,Rj(k)). (3.4)
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Figure 3.2: Definition of global and local sensor location vectors.
as(k) = (xs(k), ys(k), αs(k)) specifies the position and orientation of sensor
s in the global frame, whereas bs(k) = (x′

s, y
′

s, α
′

s(k)) specifies the sensor
position and orientation in the local vehicle coordinate frame.

The target state vector takes the form pt = (px, py) for corners and edges,
pt = (pR, pθ, pV ) for planes, and pt = (px, py, pR) for cylinders, in accor-
dance with the four target models presented in Chapter 2. The measure-
ment function hst (x(k),pt) expresses an observation z(k) from sensor s to
target t as a function of the vehicle location x(k) and the target geometry.
The target models of Chapter 2 were presented in terms of the global sensor
position as(k) = (xs(k), ys(k), αs(k)). The vehicle position x(k) defines the
transformation from local to global coordinate frames (see Figure 3.2):

xs(k) = x(k) + x′

s cos(θ(k))− y′

s sin(θ(k)) (3.5)

ys(k) = y(k) + x′

s sin(θ(k)) + y′

s cos(θ(k)) (3.6)

αs(k) = θ(k) + α′

s(k). (3.7)

Substitution of Equations 3.5 to 3.7 into Equations 2.1, 2.3 and 2.5
yields the following measurement functions for each of our target types:

For planes:
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hP (x(k),pt) = pV [ pR − (x(k) + x
′

s cos(θ(k)) − y
′

s sin(θ(k))) cos(pθ)

− (y(k) + x
′

s sin(θ(k)) + y
′

s cos(θ(k))) sin(pθ) ]. (3.8)

For corners and edges:

hC (x(k),pt) = hE (x(k),pt) = [ (px − x(k) − x
′

s cos(θ(k)) + y
′

s sin(θ(k)))2

+ (py − y(k) − x
′

s sin(θ(k)) − y
′

s cos(θ(k)))2 ]
1

2 . (3.9)

And for cylinders:

hCY L (x(k),pt) = −pR + [ (px − x(k) − x
′

s cos(θ(k)) + y
′

s sin(θ(k)))2

+ (py − y(k) − x
′

s sin(θ(k)) − y
′

s cos(θ(k)))2 ]
1

2 . (3.10)

Each range value is assumed corrupted by a zero-mean, Gaussian noise
disturbance wj(k) with covariance Rj(k). As we discussed in Chapter 2,
this Gaussian assumption is only justifiable for strong sonar returns. To
facilitate visibility prediction, line segment endpoints and arc limit angles
are explicitly contained in the map for plane and cylinder targets; these are
not used directly in the EKF.

3.3 The Basic Localization Cycle

The goal of the cyclic localization procedure can be summarized as follows:
Given the a posteriori vehicle position estimate1 x̂(k | k) and its covariance
P(k | k) for time k, the current control input u(k), the current set of obser-
vations Z(k + 1) and the current map M(k), compute the new a posteriori
position estimate x̂(k + 1 | k + 1) and its covariance P(k + 1 | k + 1). The
following assumptions underlie the algorithm we shall present.

assumption 1: p̂t(k) = pt,Λt(k) = 0 ∀ t, k
In the general navigation algorithm, the map is the set of target pa-
rameter vectors, their covariances, and target visibility angles: M(k) =
{p̂t(k),Λt(k), βt | 1 ≤ t ≤ nT }. In this chapter we consider the
limited case of localization with an accurate map, and thus perfect
knowledge is assumed of each target in the map M(k).

assumption 2: A static, two-dimensional environment
The environments under consideration are static, indoor, man-made
scenes, such as offices, corridors, hospitals, and factories. These envi-
ronments have been called “well carpentered” [110], and would be

1The term x̂(k2 | k1) signifies the estimate of the vector x at time step k2 based on
all information available up to and including time step time k1.
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Figure 3.3: The localization algorithm.
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characterized primarily by vertically oriented planes, corners, and
edges. Because we explicitly model cylindrical targets, our approach
accommodates the cylindrical wall junctions, table legs, and pillars
that are common in many indoor scenes. However, the inherent three-
dimensionality of the world will impose some difficulties.

assumption 3: p[x(k)|Zk] ∼ N(x̂(k | k),P(k | k))
The notation Zk = {Z(i)|1 ≤ i ≤ k} refers to the cumulative set of
all observations up to time k. The starting assumption from which
we develop the recursive update algorithm is that the true vehicle
position x(k) conditioned on Zk is a random variable normally dis-
tributed about the current state estimate x̂(k | k) with covariance
matrix P(k | k). This implies that the current state estimate and co-
variance are sufficient statistics to describe the true vehicle position.
Strictly speaking, because x̂(k | k) only approximates the exact con-
ditional mean, the matrix P(k | k) is an approximate mean square
error rather than a covariance [7].

The algorithm consists of the following steps: position prediction, ob-
servation, measurement prediction, matching, and estimation. Figure 3.3
presents an overview of this cyclic process. We now proceed to discuss each
of these steps in detail.

3.3.1 Vehicle Position Prediction

First, using the plant model and a knowledge of the control input u(k) ,
we predict the robot’s new location at time step k + 1:

x̂(k + 1 | k) = f (x̂(k | k),u(k)) . (3.11)

We next compute P(k + 1 | k), the variance associated with this prediction:

P(k + 1 | k) = ∇f P(k | k) ∇fT + Q(k) (3.12)

where ∇f is the Jacobian of the state transition function f(x̂(k | k),u(k))
obtained by linearizing about the updated state estimate x̂(k | k)

∇f =





1 0 −T (k) sin(θ̂(k|k))

0 1 T (k) cos(θ̂(k|k))
0 0 1



 . (3.13)

3.3.2 Observation

The next step is to obtain the observation set Z(k + 1) from the vehicle’s
sensors from the new vehicle location. This set is comprised of nO observed
RCDs.
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3.3.3 Measurement Prediction

Next, for each sensor we use the predicted robot location x̂(k + 1 | k) and
the current map M(k) to generate predicted observations of each target pt:

ẑi(k + 1) = hst(pt, x̂(k + 1 | k),bs), i = 1, · · · , nP (3.14)

to yield the set of predictions

Ẑ(k + 1) = {ẑi(k + 1)|1 ≤ i ≤ nP } (3.15)

which contains nP predicted RCDs. The predicted state estimate x̂(k + 1 | k)
is used to compute the measurement Jacobian ∇hi for each prediction. For
planes,

∇hi = pV





− cos(pθ)
− sin(pθ)

x′

s sin(θ̂ − pθ) + y′

s cos(θ̂ − pθ)





T

(3.16)

while for cylinders, corners, and edges

∇hi =
1

d









x̂ + x′

s cos θ̂ − y′

s sin θ̂ − px

ŷ + x′

s sin θ̂ + y′

s cos θ̂ − py

[(x̂ + x′

s cos θ̂ − y′

s sin θ̂ − px)(−x′

s sin θ̂ − y′

s cos θ̂)

+(ŷ + x′

s sin θ̂ + y′

s cos θ̂ − py)(x′

s cos θ̂ − y′

s sin θ̂)]









T

(3.17)

where d is the distance from the predicted location of sensor s to the point
(px, py).

3.3.4 Matching

The goal of the matching procedure is to produce an assignment from mea-
surements zj(k) to targets pt. For each prediction and observation corre-
sponding to the same sensor s, we first compute the innovation νij(k).

νij(k + 1) = [zj(k + 1)− ẑi(k + 1)]

= [zj(k + 1)− hi(pt, x̂(k + 1 | k))] .
(3.18)

If prediction i and observation j correspond to different sensors, the inno-
vation νij(k + 1) is set to infinity. The innovation covariance can be found
by linearizing Equation 3.4 about the prediction, squaring, and taking ex-
pectations to yield

Sij(k + 1) ≡ E
[

νij(k + 1)νT
ij(k + 1)

]

= ∇hi P(k + 1 | k) ∇hi
T + Ri(k + 1).

(3.19)
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A validation gate is used to determine the correspondence between pre-
dictions and observations [7]:

νij(k + 1) S−1
ij (k + 1) νT

ij(k + 1) ≤ g2. (3.20)

This equation is used to test each sensor observation zj(k + 1) for mem-
bership in the validation gate for each predicted measurement. When a
single observation falls in a validation gate, we get a successful match.
Measurements which do not fall in any validation gate are simply ignored
for localization. More complex data association scenarios can arise when a
measurement falls in two validation regions, or when two or more measure-
ments fall in a single validation region. At this stage, such measurements
are simply ignored by the algorithm, as outlier rejection is vital for suc-
cessful localization. Sufficient matching percentages are achieved in the
experimental results presented below simply by making use of unambigu-
ous matches.

Variations on this validation gate-based matching process are employed
extensively in the literature on target tracking as well as in robotics; Bolle
and Cooper [11] and Faugeras and Ayache [51], for example, employ the
equivalent Mahalanobis distance to match features in visual images. A
variety of algorithms for dealing with more complex data association sce-
narios have been presented in the multitarget tracking literature. When a
single measurement falls within two validation gates, a multiple hypothesis
tracking (MHT) data association scheme could be undertaken [111]. For
the case of multiple observations in a single validation region, a simple al-
gorithm which uses the closest match is the nearest neighbor standard filter
(NNSF). A more sophisticated alternative is the probabilistic data associa-
tion filter (PDAF), which uses a weighted sum of matches in the validation
region, combined with the probability that none of the matches is indeed
correct.

Our model-based localization system has not yet made use of these data
association methods. Because false matches can lead to EKF divergence, if
a single match is held in doubt, it is better to discard the measurement than
to be led astray by a false application. This rules out the NNSF, as one is
quite likely to get false measurements. The PDAF relies on “the underly-
ing assumption . . . that the false measurements are randomly distributed in
space, time, and intensity; [probabilistic data association techniques] may
fail when there is persistent or time-correlated interference” [7]. For local-
ization, our false measurements generally result from unmodeled objects
and other repeatable effects such as the multiple reflections discussed in
Chapter 2. Thus we feel that the full PDAF is unsuited for this sonar ap-
plication. Based on recent research in collaboration with Ingemar Cox [35],
we are optimistic regarding the potential of Reid’s MHT filter to provide
improved localization performance in extremely complex environments.
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3.3.5 Estimation

The final step is to use successfully matched predictions and observations
to compute x̂(k + 1 | k + 1), the updated vehicle location estimate. To do
so we use a parallel update procedure [134]. We first stack the validated
measurements zj(k + 1) into a single vector to form z(k+1), the composite
measurement vector for time k+1, and designate the composite innovation
ν(k+1). Next, we stack the measurement Jacobians ∇hi for each validated
measurement together to form the composite measurement Jacobian ∇h.
Using a stacked noise vector R(k + 1) = diag[Rj(k + 1)], we then compute
the composite innovation covariance S(k+1) as in Equation 3.19. We then
utilize the well-known result [7] that the Kalman gain can be written as

W(k + 1) = P(k + 1 | k) ∇hT S−1(k + 1) (3.21)

to compute the updated vehicle position estimate

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + W(k + 1)ν(k + 1) (3.22)

with associated variance

P(k + 1 | k + 1) = P(k + 1 | k)−W(k + 1)S(k + 1)WT (k + 1).
(3.23)

3.4 Algorithm Summary

To satisfy the general task of autonomous, long-term navigation, this al-
gorithm must be extended to incorporate relocation and map building and
maintenance. Map building, the subject of Chapter 4, attempts to explain
the rejects from the matching process above to update the map. However,
the experiments to follow use an a priori map, carefully generated by hand,
using a tape measure. Nevertheless, we include a map update step in the
algorithm summary of Figure 3.4, to show where it goes.

Relocation will be automatically invoked at start-up and after becom-
ing lost. In general, relocation should use search to evaluate all possible
data-to-model associations between the current observation set Z(k) and
the map M(k). However, in the implementations that follow, a generic
relocation procedure was not available. Instead, a much simpler planar-
targets-only docking procedure was used for this purpose. This procedure
could successfully initialize the position estimate when the human operator
placed the vehicle within 20 centimeters and 10 degrees of a pre-designated
home position—usually one of the corners of the room. The docking pro-
cedure consisted of one iteration of the basic EKF cycle described above,
modified as follows:
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1. The a priori vehicle position estimate is set to the home position.

2. The initial position covariance is set to a large value (10 centime-
ter standard deviation in x and y; 5 degrees standard deviation in
orientation).

3. The validation gate size g is set to infinity.

4. If three or more unambiguous matches are generated for at least two
non-parallel walls, apply the EKF to compute a vehicle location esti-
mate; else, return no answer.

5. To verify the hypothesized correspondence, a new set of predictions
is generated from the estimated location. If the set of targets pre-
dicted from the home and estimated locations are the same, return
the estimate as the vehicle’s initial position; else, return no answer.

This procedure was very useful because it had an extremely low rate of
false positives; if any correspondence ambiguity was detected, this proce-
dure simply failed to return an answer. Hence, docking worked best in
corners of the room, and provided a great saving in effort when conducting
experiments, because there was no need for the operator to hand-measure
the vehicle’s position to begin an experiment. In the future, correspon-
dence verification (step 5) should have wider application for the provision
of increased continuous localization robustness, especially when combined
with the iterated Kalman filter [54].

To decide when the vehicle is lost we use a very simple collision test
that expands the vehicle dimensions by the position covariance P(k | k)
plus a safety factor of 10 centimeters and performs an intersection test of
this bounding polygon with the map. With these extensions, Figure 3.4
summarizes the full navigation procedure.

3.5 Off-line Processing of Densely Sampled

Data

To illustrate the use of the algorithm with real data for point and line
targets, the algorithm was run off-line using data obtained from precisely
known positions, adding process noise artificially to simulate vehicle mo-
tion. These scans were acquired primarily for map building, and are used
extensively in Chapter 4. Figures 3.5 to 3.10 illustrate one cycle of the
localization algorithm. The system has a 2-D global representation of the
environment consisting of a list of line segments, and the corners they de-
fine, assumed known with absolute confidence. The vehicle starts from a
known location. This starting point is the left-most triangle in Figure 3.5.
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repeat

1. if (vehicle moving = TRUE)

then continue motion

else send next motion command

endif

2. x̂(k + 1 | k), P(k + 1 | k) ← vehicle position pre-

diction(x̂(k | k), P(k | k), u(k))

3. Z(k + 1) ← observation(D(k + 1))

4. Ẑ(k + 1) ← measurement prediction(x̂(k + 1 | k), P(k + 1 | k),
Z(k + 1),M(k))

5. z(k+1), ẑ(k + 1),∇h(k+1),S(k+1) ← matching(Z(k+1), Ẑ(k+1),
R(k + 1),P(k + 1 | k))

6. x̂(k + 1 | k + 1), P(k + 1 | k + 1) ← estimation(x̂(k + 1 | k),
P(k + 1 | k), z(k +1), ẑ(k + 1),∇h(k +1),S(k +1),R(k +1))

7. M(k +1) ← map update(M(k), Z(k +1), Ẑ(k +1), x̂(k + 1 | k + 1))

8. if (collision(x̂(k + 1 | k + 1),P(k + 1 | k + 1),M(k)) = TRUE)

then if (relocation(M(k), Z(k + 1)) = SUCCESSFUL)

then SOS = FALSE

else SOS = TRUE

endif

endif

until (((vehicle moving = FALSE)and(motion queue =

EMPTY))or(SOS = TRUE))

Figure 3.4: A summary of the full model-based navigation algorithm.
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Figure 3.5: The predicted vehicle motion, and accompanying error ellipses,
for time steps 0 to 3. No observations were taken at time steps 1 and 2. The
sonar scan taken at time step 3 is displayed with reference to the a priori
vehicle position estimate. The rectangle shows the vehicle’s true position
at time step 3.

The initial state covariance matrix P(0 | 0) is set to zero. We show a run
in which observation is suppressed for the first two time-steps.

Prediction and Observation

Figure 3.5 shows a sonar scan of 612 measurements taken at time step 3.
Based on the predicted vehicle location, Figure 3.6 shows predicted beacon
observations generated using equation 3.14, with corresponding validation
regions generated using Equation 3.19. A value of βt = 30◦ is used for
corners, planes, and cylinders, while a value of βt = 15◦ is used for edges.
The validation regions take the form of circular arcs blurred in the per-
pendicular direction by range measurement noise and uncertainty in the a
priori vehicle position estimate. In conjunction with this, Figure 3.7 shows
RCDs of width β ≥ 10◦ extracted from the original scan.
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Figure 3.6: Predicted RCDs, with validation gates shown for each predic-
tion. Note the influence of the position estimate covariance on the size of
each validation gate: validation gates for horizontal line targets are larger
than validation gates for vertical line targets, because the vehicle is less
certain of its vertical position. Also, for this run edge visibility angles were
set to be half the value for corners and planes.
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Figure 3.7: Observed RCDs displayed with reference to the a priori vehicle
position estimate.
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Figure 3.8: Matched predictions and observations.

Matching

Figure 3.8 shows the result of matching the predicted RCDs in Figure 3.6
with the observed RCDs in Figure 3.7 using Equation 3.20. The figure
shows the validation regions and observed RCDs for the seven matches
found.

Estimation

Using these seven matches, the vehicle’s a posteriori position estimate
x̂(k + 1 | k + 1) and associated variance P(k + 1 | k + 1) are computed us-
ing Equations 3.22 and 3.23. Figures 3.9 and 3.10 show the extracted RCDs
and the original scan displayed with respect to the updated position.

After inspection of Figures 3.5 to 3.10, the careful reader may have
asked: by what means was the orientation of the vehicle updated to bring
the original scan back into alignment with the room in Figure 3.10? From
the arguments of Section 2.7.2, we know that the orientation of an RCD
is not a reliable measurement of target bearing, especially when a target is
partially occluded. For this reason, our localization algorithm does not use
the sensor orientation αj(k) of a return directly in the filter. In the experi-
ments to be reported below, updates to the orientation of the vehicle come
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Figure 3.9: Observed RCDs displayed with reference to the a posteriori
estimated position.
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Figure 3.10: Original scan displayed with reference to the a posteriori es-
timated position. The triangle and rectangle show the estimated and true
vehicle positions, respectively. The error ellipse, too small to be seen, is the
dot at the center of the triangle.
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implicitly via range measurements from different sensors around the vehicle
perimeter. We use the sensor orientation as a constraint for correspondence,
to determine if a sonar return might possibly have originated from a partic-
ular target using equation 2.7. After this test is passed, matching proceeds
by validation gating in range; for each unambiguous match, new entries
are added to the composite predicted and observed measurement vectors
ẑ(k + 1) and z(k + 1).

From these arguments, it is clear that it would be difficult to estimate
the vehicle orientation solely on the basis of a single scan from the Polaroid
sonar. For this reason, the original, single-scanner implementation for the
robot Eric planned to use a digital compass. Hence, to generate Figures 3.5
to 3.10, a simulated compass measurement was used to provide a direct
angle update for the EKF. Our subsequent experiments have in fact never
used a compass, but we include these figures nevertheless, because they
provide a useful step-by-step illustration of the process. Because of the
unique layout of the sonar transducers on the Robuter mobile robot, the
experiments to follow bypass this issue.

3.6 Sparse Data Error Model

Several versions of this navigation algorithm have been implemented on
two Robuter mobile robots through the course of our research. The system
has not yet been perfected, but the experimental results we present here
demonstrate the feasibility of our approach. Appendix A presents hardware
and software details of the implementations.

As shown in detail in Appendix A, each Robuter has a ring of static
sonars. The SKIDS2 vehicle is equipped with six transducers, while the
Oxford Robuter, pictured in Figure 3.11, has eight transducers. Localiza-
tion via complete scans, as illustrated in the previous section, is not feasible
because of the long time required to obtain a complete scan. The advan-
tage of a ring of fixed sonars is that a set of returns over a wide spread
of orientations can be quickly obtained. However, the disadvantage is that
interpreting the data is made more difficult because each range measure-
ment has no local support, as in the densely sampled scan of Figure 2.1 in
Chapter 2. From the arguments of Section 2.6, recall that sonar’s range
is only accurate for strong returns. Weak returns might be delayed by
as much as the duration of the transmitted pulse, adding up to 19 cen-
timeters to the true range when a 1.13 millisecond pulse is transmitted. A
question that must be considered is, given a return, is it strong or weak?
This is easily answered with dense data by considering the range of neigh-
boring returns. The uncertain mechanism by which weak returns trip the

2SKIDS is an acronym for Signal and Knowledge Integration with Decisional control
for multi-Sensory systems, the title of ESPRIT project P1560.
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Figure 3.11: The Oxford Robuter.

detector threshold results in large range fluctuations for small changes in
transducer orientation. Since local support is not present, it is impossible
to know whether a single return from a ring of sonars is strong or weak
from time-of-flight information only. Thus, the range accuracy of isolated
returns cannot be predicted.

Fortunately, there is a way out of this dilemma. The preceding para-
graph considered the long-range sensing mode, which is standard for the
Polaroid system. With a short transmitted pulse, weak returns are essen-
tially eliminated, and range can be trusted to within 1 centimeter. Thus,
the experiments which follow make exclusive use of the Robuter’s short-
range sensing mode. Range values are assumed to be normally distributed
about the true range with a standard deviation of 1 centimeter. This value
probably underestimates the accuracy of the short-range sensing mode, and
the true error distribution will of course not be exactly Gaussian, but we
feel the success of our experiments justifies this assumption.

3.7 Tracking Planar Targets

Our first implementation of the algorithm, using the SKIDS vehicle, made
use of a map comprised exclusively of line segment targets; our results were
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reported in [89]. The vehicle moved continuously, following a sequence of
straight-line motions and on-the-spot rotations supplied by a Voronoi dia-
gram trajectory planner. The implementation was based on the principle
that range measurements could only be matched if the sonar transducer
was nearly perpendicular to a planar target when the measurement was
obtained, using a value of βi = 26 degrees in equation 2.7. (Thus nearly
perpendicular in this case means within 13 degrees of the orthogonal direc-
tion to a wall beacon.)

Because of the configuration of the six fixed sensors on the SKIDS
Robuter (one sonar facing forwards and backwards, two facing left and
right) the system was restricted to follow paths that were nearly perpen-
dicular to the walls of the room. Despite this restriction, the system demon-
strated that accurate localization is achievable with sonar, provided one has
a good sensor model. The model presented in Chapter 2 tells us that for
planes, corners, and cylinders, sonar provides very precise distance mea-
surements, but at other times misleading multiple reflections; the key to
using sonar is knowing when it is telling the truth. Our earliest imple-
mentation achieved this by only attempting to use updates from 1st-order,
planar targets and using tight validation gates to reject outliers.

However, this implementation was unable to accommodate the multi-
tude of returns actually produced by edge and corner targets in the room,
even at vehicle orientations nearly perpendicular to the room. It was clear
that a system was required which could predict and explain sonar observa-
tions for all target types: planes, cylinders, corners, and edges.

3.8 Tracking Planes, Corners, and Cylinders

Using the knowledge derived from the initial implementation results de-
scribed in [89], an improved system was developed that could track all four
types of targets described in Chapter 2. Unfortunately, communication de-
lays between the robot and workstation introduced significant delays that
made accurate time-stamping of the sonar returns impossible. Hence, all
the experiments we report below are “stop, look, move” runs in which the
vehicle came to a complete stop to acquire each sonar data set. While the
logical step to overcome this problem would be to download our code to
run on the 68020 microprocessor on-board the vehicle, this task would have
unfortunately entailed deciphering a great deal of vehicle control software
written in French, not to mention many battles with the customs agents of
Heathrow and Charles de Gaulle Airports.
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3.8.1 Implementation OxRob-1

The results we show here are from a “stop, look, move” run in the Oxford
AGV lab, using the Oxford Robuter. The lab is characterized primarily by
rough, painted brick surfaces, and has large pillars with rounded corners,
each with a 2.25 inch radius of curvature. The room model was measured
by hand. The lab is a confined space with workstations and other mobile
robots that present complex three-dimensional targets. To bypass three-
dimensional effects in testing the program, clutter areas were introduced
into the model. The clutter areas for this run are shown as shaded regions
in Figure 3.12. Prediction is suppressed for targets in clutter areas, and
vehicle travel into these areas is prevented.

Appendix A gives vehicle dimensions and sensor positions. The docking
procedure described earlier was used to initialize the vehicle position to the
known location in the lower right-hand part of the room. Figure 3.13 shows
the vehicle location estimated by the algorithm and the dead-reckoning
estimate of the vehicle’s internal controller for each stage of the complete
run. Figure 3.14 shows the validated returns used to update the vehicle
position for various stages of the run. For these runs, a path planner was
not yet developed. Vehicle motion was guided at the SUN workstation by
an operator specifying forward, reverse, left or right motion commands in
discrete steps, usually 20 centimeters or 30 degrees.

A value of 2 was used for g, the validation gate “number of sigmas” in
Equation 3.20. The matrix Q(k) was given values to reflect 5 centimeters
of position error and 4 degrees of orientation error for each meter of trans-
lation or 90 degrees of rotation. At this predicted location, predicted range
measurements are generated for each target in the map using the target
models presented in Chapter 2. A value of 30 degrees was used for βMAX ,
the maximum visibility angle for each target. If the predicted sensor ori-
entation is not within 15 degrees of the true bearing to a target, a NULL
prediction that cannot be matched is generated. The innovation variance
S(k +1) is computed using σr = 1 centimeter for the standard deviation of
range measurement error.

Figure 3.15 shows the number of validated returns for each step of the
room. Thirty-seven percent of the 976 returns taken during the run were
validated, for an average of 3 matched returns per time step. Figure 3.16
shows the cumulative matching percentage vs time. We were surprised by
the frequency of matches to the cylindrical targets defined by the pillars
of the room. These turned out to be very good navigation beacons. One
target that was frequently matched during the run was a vertically ori-
ented 2 centimeter diameter electrical pipe, a scarcely visible dot in the
lower right-hand corner of Figures 3.12 to 3.14, that was left out of earlier
room models. This was one of many instances in our research in which
sonar surprised us by consistently observing environment features that we
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Figure 3.12: Model of the room for localization run OxRob-1. The shaded
areas represent regions of clutter, for which predicted observations were
not generated. The shaded region in the upper right was occupied by the
Oxford AGV. The thin shaded section jutting out to the left from this area
enclosed a radiator. SUN workstations and people occupied the shaded
region to the left.
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Figure 3.13: Estimated (rectangle) and odometric (triangle) positions for
each step of the complete run.
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time 95 time 123

time 84time 76

time 4 time 39

Figure 3.14: A localization run in the Oxford AGV laboratory, showing the
validated sonar range measurements used to update the vehicle position
at various stages in the run. The triangle shows the current position as
estimated solely by odometry. The rectangle shows the a posteriori position
estimate produced by the algorithm.
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Figure 3.15: Number of validated returns for each time step.
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Figure 3.16: Cumulative matching percentage vs time.
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Figure 3.17: A plot of the distance from the estimated to the odometric
position vs time. Note how the distance decreases as the odometric position
value comes back to cross the vehicle’s actual path.
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Figure 3.18: A plot of the difference in angle between the filter’s estimated
orientation and the orientation estimate of odometry.
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previously had not even noticed were in the room.
True vehicle positions were not recorded for this experiment, but the

consistently high matching percentage throughout the run indicates the
success of the algorithm. Odometry’s performance was surprisingly poor,
as shown by Figures 3.17 and 3.18, which show the distance and orienta-
tion difference between the filter estimate and the vehicle’s internal dead-
reckoning computation. At the end of the run odometry’s position estimate
was off by about 35 degrees and 1.3 meters. We believe the dominant rea-
son for this is the design of the vehicle itself. The Robuter vehicle has two
driven rear wheels and two passive front casters. The front casters yield
unpredictable and sometimes drastic “shopping trolley” effects whenever
the vehicle changes direction. These effects introduce large errors into the
orientation estimate of dead-reckoning, as clearly shown in Figure 3.13.

3.8.2 Implementation SKIDS-2

The ideal means of evaluating a navigation system is to have accurate mea-
surements of the true vehicle position for comparison with the filter esti-
mate. For “stop, look, move” runs, measuring the vehicle position does not
change the character of the experiment, but can be a tedious procedure. For
“on-the-fly” runs, obtaining a current and accurate estimate of the moving
vehicle’s position is a serious challenge to experimental work in navigation.
Eventually, we hope to use an artificial beacon system, such as the GEC
bar-code system installed for the Oxford AGV [17], as a data-logging device
to permit experimentation of this nature with moving vehicles. However,
such facilities were not available for our research with the Robuter vehicle.

The SKIDS room is about 12 meters long by 5 meters wide, and is
comprised primarily of vertical office partitions and smooth walls. The
SKIDS room has a 30 centimeter grid tile floor that facilitates measuring the
position of the vehicle when stationary. Positioning markers were fitted to
either side of the vehicle, and their (x, y) positions were recorded, allowing
computation of the vehicle position and heading after the experiment. This
run uses the same version of code as for implementation OxRob-1, with the
same values for the EKF parameters g, Q(k), and R(k). Figures 3.19 and
3.20 show estimated and true (hand-measured) positions for various stages
of the run, along with magnified 10σ error ellipses (major and minor ellipse
axes each magnified by 10). For this run, each leg of the vehicle’s path was
again specified by an operator at the SUN workstation.

In this run, the vehicle was led astray by a false match to the top wall
at time step 10, as shown in Figure 3.19. Figure 3.21 gives a description
of what happened. At this time step, the true vehicle orientation is nearly
180 degrees, and a three-dimensional target, caused by a row of electrical
outlets along the floor, came into view. This target is not accommodated
for in the 2-D map, and hence the filter matched the return to the top wall.
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time 33 time 48

time 23time 16

time 1 time 10

Figure 3.19: Various stages of Localization run SKIDS-2. The validated
sonar range measurements used to update the vehicle position at various
stages in the run are shown. The triangle shows the current true vehicle po-
sition, as measured by hand. The rectangle shows the a posteriori position
estimate produced by the algorithm.
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time 82 time 83

time 74time 65

time 48 time 51

Figure 3.20: Various stages of Localization run SKIDS-2, continued. The
validated sonar range measurements used to update the vehicle position at
various stages in the run are shown. The triangle shows the current true
vehicle position, as measured by hand. The rectangle shows the a posteriori
position estimate produced by the algorithm.
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Figure 3.21: What happened at time step 10? Because the true vehicle ori-
entation was nearly 180 degrees, a strong three-dimensional target, caused
by electrical outlets along the floor, came into view. These effects are much
more likely to happen at longer ranges (4.3 meters in this case). Note: this
figure is not drawn to scale.

This false match has the effect of “pulling” the front right of the vehicle
towards the top wall, introducing an error in orientation. After this time
step, the vehicle steadily veered off course, and relocation was invoked (by
the operator) at time step 17, using the office partition below the vehicle
(horizontal in the 2-D map) and the wall to the right (vertical in the 2-D
map).

Figure 3.22 shows the distance between true and estimated positions,
and the distance between true and odometric positions. Figure 3.23 shows
the difference in angle between true and estimated orientations, and true
and odometric orientations. Examination of these graphs shows that after
time step 10 until time step 17, when relocation was invoked, the filter
estimate is worse than odometry. Figure 3.24 shows the number of validated
returns for each step of the room. Approximately 30 percent of the 498
returns taken during the run were validated, for an average of just under 2
matched returns per time step. Figure 3.25 shows the cumulative matching
percentage vs time.

3.9 Hands-off Localization Results

More recently, a simple trajectory planner has been added to the system to
provide the capability for truly hands-off experiments. A sequence of goal
positions (typically about five) are supplied. The vehicle is moved close to
the home position and then a single button marked “Go” on the workstation
is pressed to send the robot on a path from one goal location to the next
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Figure 3.22: A plot of the distance from the estimated position to the true
position (solid line) and the distance from the odometric position to the
true position (dashed line), specified in meters.

Angle est from true and odom from true

-10

-5

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90

Figure 3.23: A plot of the difference in angle between the estimated and true
orientations (solid line), and the odometric and true orientations (dashed
line), specified in degrees.
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Figure 3.24: Number of validated returns for each time step.
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Figure 3.25: Cumulative matching percentage vs time.
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until either 1) the collision test described above decides the vehicle is too
close to some target in the map, 2) the vehicle’s safety bumpers detect an
actual collision, 3) the batteries fail or a robot cpu reset occurs for some
other reason, or 4) the operator decides to abort the experiment.

The trajectory planner operates by finding three paths: 1) a direct,
straight-line path from the current position to the goal, 2) an indirect, two-
line path via the point with the same x coordinate as the goal, and 3) an
indirect path via the point with the same y coordinate as the goal. Each of
these paths in then tested to see if the vehicle comes within 10 centimeters
of the map boundary at any position on the route. After a trajectory
is executed, the distance between estimated and goal vehicle positions is
compared with a “parking tolerance”, chosen to be 10 centimeters and 6
degrees for these experiments. If the parking tolerance is met, a path is
generated to the next goal; otherwise, a new path is planned for the current
goal.

This control strategy was sufficient to achieve hands-off localization
sequences at least thirty minutes in duration on at least twenty different
occasions in the Oxford and SKIDS laboratories in May and June of 1991.
All of the parameter values used were the same as in the experiments above.
The typical time to failure was about one hour, with the longest run in each
laboratory exceeding three hours. Some experiments were stopped before a
failure because someone else needed the vehicle. Others were aborted when
the radio RS 232 link to the vehicle caused mysterious cpu resets. About
a third of the experiments terminated because the vehicle either physically
collided with a wall or the collision test routine determined the vehicle was
too close to a wall.

Figures 3.26 and 3.27 show odometric and estimated positions for a
one-hour run (OxRob-2) in the Oxford AGV lab that was aborted because
the vehicle physically crashed into the bottom wall. Figures 3.28 and 3.29
show another approximately one-hour run (OxRob-3) taken immediately
after OxRob-2 was finished. OxRob-3 was aborted due to the failure of the
vehicle’s batteries.3 Figures 3.30 through 3.33 show two runs in the SKIDS
laboratory. The first of these (SKIDS-3) ended with the vehicle safely in
track, while the latter experiment (SKIDS-4) was aborted by the operator
due to impending collision with the bottom wall—the estimated vehicle
position was off by about 25 centimeters. Table 3.1 shows the total number
of EKF cycles, the total number of returns acquired, and the cumulative
matching percentage for each of these four runs.

3Unfortunately, the battery charger for the Oxford Robuter exploded the week before
this experiment was performed. This occurrence, coupled with the pending expiration
of the first author’s final visa extension from the Home Office, thwarted our plans for a
systematic mean-time-to-failure analysis. In defense of the incompleteness of this exper-
imental record, one can argue that extensive experimental verification is best postponed
until model-based localization has been demonstrated with autonomously learned maps.
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Figure 3.26: Odometric position vs time for run OxRob-2.

Figure 3.27: Estimated position vs time for run OxRob-2.
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Figure 3.28: Odometric position vs time for run OxRob-3.

Figure 3.29: Estimated position vs time for run OxRob-3.
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Figure 3.30: Odometric position vs time for run SKIDS-3.

Figure 3.31: Estimated position vs time for run SKIDS-3.
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Figure 3.32: Odometric position vs time for run SKIDS-4.

Figure 3.33: Estimated position vs time for run SKIDS-4.
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Run Date EKF cycles Returns Matches Percentage

OxRob-2 June 11, 1991 457 3656 1428 39.1%

OxRob-3 June 11, 1991 584 4672 1906 40.8%

SKIDS-3 June 5, 1991 303 1818 698 38.4%

SKIDS-4 June 6, 1991 354 2124 771 36.3%

Table 3.1: Cumulative matching percentages for hands-off runs.

3.10 Discussion

An important distinction between these implementations is that the painted
brick surfaces of the Oxford AGV lab are considerably less favorable to our
specular sonar model than the smooth surfaces of the SKIDS room. The
algorithm succeeds nonetheless, because our sensor model can still ade-
quately predict sonar returns at nearly orthogonal angles of incidence. For
localization, it is not necessary to predict all sonar returns, just a sufficient
subset of returns to achieve navigation. The concept of localization by
tracking geometric beacons rests on the assertion that data corresponding
to beacons will be easier to predict and explain.

The question “how can this algorithm be implemented most efficiently?”
has not yet been extensively addressed. In particular, considerable time is
spent in the prediction stage of the cycle. (This time was less than 1 sec-
ond for the implementations.) The current map is an unordered list of
targets. An efficient pre-sorting of the map would increase the speed with
which prediction can be undertaken. A large body of previous work in
computational geometry has addressed efficient visibility prediction for op-
tical sensors. Acoustic visibility prediction presents an interesting topic of
research, but we have not yet undertaken a rigorous pursuit of this subject.

As mentioned in Chapter 1, a primary concern when using the Kalman
filter is to justify the choice of values for the parameters such as Q(k),
R(k), and g. The parameters used here were arrived at through intuition
and informal experimentation. Systematic experimentation to “balance”
the filter has not yet been undertaken. Taking another look at Figures
3.22 and 3.23, when the vehicle is being successfully tracked the difference
between true and estimated positions is still less that satisfactory. However,
the repeatability of the experiments in different laboratories with different
trajectories does demonstrate a certain level of parameter robustness.

3.11 Alternative Approaches

Our approach to using sonar for localization is different from commonly
advocated approaches which compute position by first building up a local
representation, either line segment-based[37], or grid-based[45], and then
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matching this with a global model or grid. We believe that faster, more
reliable performance can be obtained with our approach for two reasons:

• With local-to-global correlation methods, the benefits of achieving
correspondence are quickly discarded. Subsequent position estimation
requires repetition of the whole process. The time-consuming part
of position estimation is achieving correspondence. For the fastest
operation possible, the correspondence problem must be kept “out of
the loop”.

• Because of the presence of a considerable number of outliers in both
the local and global representations, the accuracy of the resulting
position estimate is degraded. We believe that not all sonar data
should be treated equally; some observations will be very reliable,
others completely misleading. Because the straightforward use of a
sonar sensor model can distinguish many erroneous measurements,
position estimation should be undertaken with only “good” data. In
contrast, grid-based position estimation by correlation treats all sonar
data equally.

Instead of matching a local map to a global map, we associate individ-
ual sonar measurements directly with the global map. Just a few range
measurements, correctly associated with the environment feature that pro-
duced them, can uniquely determine position, and even a single explained
measurement provides a single degree of freedom position update. A sim-
ilar distinction can be found in the literature on traditional navigation
applications—we direct the reader to compare the original concept of ter-
rain contour matching (TERCOM) navigation [66] with the terrain-aided
navigation (SITAN) algorithm developed more recently at Sandia National
Laboratories [68].

3.12 Summary

This chapter has presented a model-based approach to localization. In
analogy with model-based vision, correspondence is achieved directly be-
tween observations and a geometric model. This should be contrasted to
occupancy grid and local composite model-based approaches, which first
build up an intermediate representation and then correlate this interme-
diate representation with a global grid or model to compute the position
update. By avoiding the construction of intermediate representations, this
algorithm lends itself to a continuous implementation, in which the corre-
spondence problem can be taken “out of the loop” to allow high bandwidth
position estimation. In contrast with motion estimation methods, position
is estimated with respect to a global reference frame at each time step.
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The implementation characterized by Figures 3.26 to 3.33 has several
significant limitations:

• The maps were constructed by hand.

• Portions of the room too complex to model by hand were declared
“out of bounds”.

• Vehicle travel was “stop, look, move”, rather than continuous, because
of hardware timing uncertainties and workstation-vehicle communi-
cation delays.

Despite these limitations, these experiments demonstrate that reliable, long-
term localization can be achieved without artificial beacons, using odometry
and sonar.



96 CHAPTER 3. MODEL-BASED LOCALIZATION



Chapter 4

Map Building

We now turn our attention to the bottom-up interpretation of sonar data
to build a map of the environment. This aspect of the overall problem is
complementary to our discussion of localization in the preceding chapter.
The experimental results presented here deal with the problem of learning
with precise position estimates, a limited form of the general problem.

4.1 Introduction

Although the experimental results of the preceding chapter used hand-
measured models provided a priori to the robot, we contend that sonar-
based navigation is feasible only if environment maps can be autonomously
learned and maintained. We have several reasons for this belief:

• Very few application environments are completely static, and hence
any a priori map will soon be inaccurate.

• A sonar sensor “sees” a completely different world than we do, be-
cause of the physics of sonar described in Chapter 2. It is difficult to
construct a hand-measured map of an environment and know which
features will actually be visible to the sensor. The hand-measured
maps used in this book were only constructed after acquiring and
displaying a variety of data in each of the rooms.

• To predict sonar data in practice, maps need to contain all four targets
types described in Chapter 2, and thus require a high level of detail.
Previous work has used maps that contain only line segments, and
only roughly approximate the room geometry [40].

Our goal for a bottom-up sonar interpretation algorithm is to produce
accurate, detailed descriptions of typical indoor scenes, using standard Po-

97
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laroid hardware. Of overriding concern is the utility of the map for position
determination.

4.2 Specular Event Interpretation

For underwater sonar, Hallam introduced the concept of specular event
analysis:

Specular echoes, however, have a high intrinsic information content.
In common with diffuse echoes, they permit the sonar equipment
to determine the relative position of the echo source, but they also
constrain the local structure of the object responsible for the echo
(because of the alignment of the observer and the object necessary
for the specular reflection to occur). . . . I suggest a new method that
uses directly the information present in specular reflections and the
history of the vehicle motion to classify the specular echo sources and
infer the local structure of the objects bearing them. [62]

Hallam presents three-dimensional target models for six types of spec-
ular event sources, which we list in order of decreasing reflected signal
strength: concave corners, concave linear sources, planar sources, cylindri-
cal sources, spherical sources and convex linear and corner sources. He
presents an algorithm for distinguishing between point and line sources
based on the computation of the scatter matrix of target observations.
This technique assumes full observability of the target position from a sin-
gle measurement, a reasonable assumption for an underwater sonar with a
beam width of a few degrees. For this reason, however, his technique would
be unsuitable for wide beam airborne sonar devices such as the Polaroid
ranging system.

Hallam’s proposal has strongly influenced this research. However, our
application presents very different conditions from the underwater environ-
ment. As we discuss elsewhere, the assumption of a two-dimensional world
is largely sufficient in our application, and hence we can reduce Hallam’s
target model set to four target types: planes, concave corners, cylinders,
and convex edges. However, the wide beam of airborne sonar makes tar-
get bearing unobservable. To implement Hallam’s idea in practice, public
enemy number one, the correspondence problem, must be overcome. Fur-
ther, the errors that characterize Polaroid ranging system data, discussed
in Chapter 2, must be identified and eliminated.

For sonar in air, Kuc and his associates have treated map building as a
process of interpreting specular events. One system [8] uses a linear array
of transducers to differentiate wall and corners. In our terminology, this is a
process of track initiation. One very important benefit of using a rotatable
array of transducers is that the process can be achieved without moving the
vehicle on which the array is mounted. Another approach, which has been
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described in an as yet unpublished report [15], uses sonar data acquired
from a single mobile rotating scanner to differentiate corners, planes and
(diffuse) edges. The differences between this formulation and our approach
will be subsequently addressed.

Brown has examined the problem of extracting three-dimensional sur-
face information for planar and curved surfaces using sonar [22], [23]. Sur-
face tracking and object recognition have been demonstrated. In Brown’s
experiments, a robot manipulator-mounted transducer and carefully engi-
neered signal processing electronics are used [98]. Thus errors due to sensor
positioning and sonar hardware are minimized, and the primary source of
error is variations in the speed of sound in air over the path length of the
echo. An analysis of this source of error is presented. The errors of Brown’s
system are at least an order of magnitude smaller than the errors in our
system for two reasons: 1) our standard Polaroid sonar electronics add sig-
nificant errors and 2) vehicle position errors greatly change the character
of the estimation problem from the manipulator-mounted sensor case.

4.3 Rules for RCD-based Sonar Interpreta-

tion

We propose a technique for the classification of unknown RCDs based on
two simple rules, illustrated by Figures 4.1 and 4.2.

Rule 1: circle test. RCDs which correspond to a plane (or cylin-
der) will all be tangent to the plane (or cylinder), while RCDs which
correspond to a corner (or edge) will all intersect in a point, at the
corner (or edge).

Rule 2: constraint angle test. The bearing to a hypothesized target
must lie within the constraint angles θu and θl of the RCD.

Each RCD defines a circle centered at the sensor location with radius equal
to the range of the RCD. Testing data-to-data association hypotheses for
multiple RCDs is a process of finding the common tangents and intersection
points of the circles the RCDs define. Impossible alternatives are then
ruled out using the constraint angles defined in Chapter 2. In this way,
single element RCDs obtained by a sonar ring or a moving vehicle are
treated identically to the densely sampled data obtained by scanning from
a stationary position. The only difference is that the constraint angles θu

and θl will be farther apart for RCDs with less local support, and thus more
observations may be required to determine the correct hypothesis.

Before attempting any automatic interpretation of sonar data, we now
show a sequence of pictures of real Polaroid data which illustrate the infor-
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Figure 4.1: RCDs which correspond to a plane (or cylinder) will all be
tangent to the plane (or cylinder). RCDs which correspond to a corner
(or edge) will all intersect in a point, at the corner (or edge). RCDs for
multiple reflections can be distinguished because they follow unpredictable
trajectories as the vehicle moves.
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Figure 4.2: The constraint angles θu and θl are used to rule out incorrect
hypotheses produced by the common tangent line and circle intersection
routines.

mation content conveyed by RCDs, confirming the rules for RCD interpre-
tation set out above. Figures 4.3 to 4.9 show the results of extracting RCDs
from real sonar scans taken in several scenes. These events form the input
to bottom-up interpretation. The figure captions provide more detail.

4.4 Map Building via Track Initiation

In the previous chapter, the special case where the map contains precisely
known targets was considered. In general, the map is the set of target
parameter vectors, their covariances, and target visibility angles:

M(k) = {p̂t(k),Λt(k), βt | 1 ≤ t ≤ nT }. (4.1)

Map building involves two stages:

1. Classification of new tentative targets, via data-to-data association.
This is a process of clustering together unexpected RCDs that yield
a mutually consistent target interpretation.

2. Promotion of tentative targets to confirmed status. After classifica-
tion, the objective is to match new observations to tentative targets
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Figure 4.3: A sonar scan with 612 equally spaced returns taken with a
single unknown object in the room. The room is 12 by 5 meters and the
room model was measured by hand. What is the object? (Note the classic
response of the wall directly in front of the vehicle, about 4 meters away.)
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Figure 4.4: RCDs of width β ≥ 10 degrees extracted from this scan. Using
time-of-flight information only, corners, planes, cylinders and multiple re-
flections cannot be distinguished from a single scan. (Kuc and Siegel first
reported this result for corners and planes.)
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Figure 4.5: To determine the unknown geometry, we need to move the
vehicle and take another scan. This picture shows the RCDs extracted
from the first two scans of a motion sequence.
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Figure 4.6: RCDs extracted from a complete motion sequence around the
unknown object. The vehicle was manually controlled, and its position
measured to within a few millimeters at each sensing location.
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Figure 4.7: A close-up view of the RCDs extracted from a complete motion
sequence around the unknown object, which is a cylinder (30 centimeter
diameter trash can), yielding an RCD from each sensing location that is
tangent to the circle defined by the projection of the cylinder onto 2-D.
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Figure 4.8: RCDs of width β ≥ 10 degrees extracted from a grid of sonar
scans. The room is approximately 3 meters long by 2 meters wide, and is
described in more detail below. RCDs from different locations give support
to each other, giving valuable information for learning the geometry of an
unknown environment.
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Figure 4.9: RCDs extracted from a grid of sonar scans superimposed on a
hand-measured model of the room. 0th and 2nd order RCDs intersect at
edges and corners. 1st order RCDs correspond to planes, represented in
2-D by a line that is tangent to all the RCDs that correspond to the plane.
3rd and higher order RCDs, caused by multiple specular reflections, do not
give support to each other.
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to compute increasingly accurate target estimates. Matches to ten-
tative targets are obtained with the same data-to-target association
mechanism used for localization, that is, by matching RCDs predicted
from the target estimate p̂t(k) to observed RCDs.

When the RCDs which comprise an unknown cluster provide a single
consistent target interpretation, we promote the unknown cluster to be
a tentative target. The identity (point, line, arc of a given radius) of a
tentative target is known. The initial values for the target state estimate
p̂t(k) and covariance Λt(k) of a new target are computed using a batch
least-squares computation, described below. After a sufficient number of
additional sightings, tentative targets are promoted to be confirmed targets.
Confidence in confirmed targets is sufficiently high that they are acceptable
for use as beacons. The estimation focus is shifted from refining the target
estimate to using the target estimate to compute vehicle position.

Unexpected RCDs are the rejects of localization—observed RCDs that
do not match any tentative or confirmed target currently in the map. An
unknown cluster is a set of one or more unexpected RCDs which yield mutu-
ally consistent interpretations for two or more target types. As discussed in
Chapter 2, an isolated RCD is consistent with all possible interpretations.
The goal of the algorithm is to elevate an unknown cluster to the status of
tentative track, providing initial values for the target state estimate p̂t(k)
and covariance Λt(k).

4.4.1 Matching Two Observed RCDs

The basic procedure used in the track initiation algorithm attempts to
match two unexpected RCDs based on corner, plane and cylinder assump-
tions. Following rule 1, we use each RCD to define a circle, centered at the
sensor location with radius equal to the range value of the RCD. Without
loss of generality, we define a local coordinate system, centered at sensor lo-
cation 1, with sensor location 2 on the positive x axis at the position x = d,
where d is the separation between the two sensor locations, as shown in
Figure 4.10. Let z1 and z2 be the range values of the two RCDs. The
general problem is to find a third circle of known radius R which is tangent
to the two circles the RCDs define. Then, the special case of line and point
targets can be found by taking the limit as R→∞ and R→ 0, respectively.

Let φ1 be the bearing to the hypothesized target from the origin of the
local coordinate system. We can compute φ1 using the law of cosines:

cos(φ1) =
(z1 + R)2 − (z2 + R)2 + d2

2 d (z1 + R)
. (4.2)

Taking the limit of this equation as R → ∞ yields the result reported by
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Figure 4.10: Matching two observed RCDs.

Brown for line targets [22]

cos(φ1) =
z1 − z2

d
(4.3)

while setting R = 0 yields

cos(φ1) =
z2
1 − z2

2 + d2

2 d z1
(4.4)

for point targets.
For point and arc targets, the center of the circle is computed by:

xc = (z1 + R) cos(φ1) (4.5)

yc = (z1 + R) sin(φ1). (4.6)

For each value of R, each pair of circles can define zero, one, or two
targets. The next stage after hypothesis generation is to rule out impossible
targets using rule 2 above, the constraint angle test. A match is accepted
if the bearing to the hypothesized target from each sensor location falls in
the range of the constraint angles θu and θl for each RCD. Each pairwise
match defines two contact points, which are the points on each RCD which
are tangent to the hypothesized target. The contact points for a corner
target coincide at the circle intersection point.
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Classification of a cluster is decided by the percentage of RCDs in
the cluster which match one another according to each hypothesis. In the
implementation results which follow, the environments under consideration
contain only line (plane) and point (corner and edge) targets. Clusters are
considered unknown until they have at least three RCDs and the percentage
of pairwise matches in the cluster that support the alternative hypothesis
falls below 70 percent.

4.4.2 Initializing the Target Estimate

Once a classification decision has been made, the target estimate for a point
target is taken as the average of all the contact points from each pairwise
match. The target estimate for a newly classified line target is the best-fit
(infinite) line through the contact points for all successful pairwise matches,
computed using orthogonal regression. The endpoints of a line target are
estimated by projecting new observations onto the infinite line.

4.5 Experimental Results

The above algorithm has been implemented for the case in which vehicle
positions were measured by hand, accurate to within a few millimeters.
We show results from the off-line processing of data taken in two different
environments.

4.5.1 A Small Clutter-Free Room

The first run we show uses data acquired in a small room in Oxford, free of
clutter, with plasterboard walls that are typical of most office environments.
Figure 4.11 shows triangles at each vehicle location for 18 sonar scans and a
hand-measured model of the room in which the scans were taken. The scans
were processed off-line in a circular sequence, starting from the upper left of
the figure. Figures 4.12 and 4.13 show the state of the learned map after just
three time-steps, after which 2 line targets and 3 point targets have been
classified. Each RCD in these figures is extended to a full circle to show the
mechanism with which the algorithm functions, in accordance with rules 1
and 2 above. For vehicle travel in the direction of the hypothesized target,
the circle intersection routine is very sensitive to small errors in sensor
location. For this reason, when the direction of vehicle travel is within 15
degrees of the orientation of the two RCDs, matches are approved for both
target types but no contact points are calculated. This has the effect of
delaying the classification decision until RCDs from other sensing locations
are obtained. This case is clearly shown for cluster 4 in Figure 4.13.
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Figure 4.11: Hand-measured map of the room in which the grid of scans
were taken. Eighteen scans of the grid were processed by the map building
algorithm, starting at the shaded triangle in the upper left-hand corner of
the room. The room is about 3 meters wide, with a closed door in the
upper right-hand region of the picture. The bottom wall was assembled
using sheets of cardboard.
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cluster 6 cluster 7

cluster 2cluster 1

Figure 4.12: Classified clusters at time-step 3, illustrating the manner in
which a circle is defined for each RCD. Clusters 1 and 2 have been classified
as line targets because the constraint angle test has ruled out a point target
interpretation. Similarly, clusters 6 and 7 have been classified as point
targets.
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cluster 4 cluster 8

Figure 4.13: Two clusters which are as yet unclassified at time-step 3,
because both point and line target interpretations are still consistent.

Cluster Type Estimated Actual Difference
R θ R θ R θ

1 Line 0.507 89.8 0.50 90.0 0.007 −0.2

2 Line 1.405 −89.2 1.402 −89.8 0.003 0.6

3 Line 1.708 0.5 1.712 0.0 −0.004 0.5

4 Line −1.009 −0.2 −1.000 0.0 −0.009 −0.2

Table 4.1: Comparison of learned line target parameters with actual values,
hand-measured to a few millimeters of accuracy. Range is given in meters,
orientation in degrees.

Figure 4.14 shows the map produced by the algorithm after the full 18
scan sequence has been processed. Magnified 8σ error ellipses are shown
for point (corner and edge) targets. Target estimates are calculated using
orthogonal regression on the set of contact points, as described above. Fig-
ure 4.15 shows this map superimposed on the room model, revealing the
correspondence between the learned map and the actual room geometry.
Figures 4.16 and 4.17 show most of the clusters used to make this map.
Tables 4.1 and 4.2 show these results quantitatively. Hand-measured and
learned values are usually within 1 centimeter of agreement. These results
show the compression of 11,016 sonar returns into just 14 target estimates.
This illustrates map building as a process of acquiring more and more range
measurements to yield increasingly precise geometric descriptions.

4.5.2 A More Complex Environment

The results we now show are from the SKIDS room, as used for the localiza-
tion experiments of the previous chapter. This environment is considerably
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Figure 4.14: Map of the room produced by the algorithm. 8σ (major and
minor ellipse axes multiplied by 8) error ellipses are shown for point (corner
and edge) targets.

Figure 4.15: Learned map superimposed over room model.
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cluster 6 cluster 7

cluster 5cluster 4

cluster 1 cluster 2

Figure 4.16: Point and line clusters obtained during the run. Cluster 7 is
caused by multiple reflections off the top wall to a corner below.
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cluster 13 cluster 17

cluster 11cluster 10

cluster 8 cluster 9

Figure 4.17: More clusters obtained during the run. Cluster 11 is a point
target erroneously initiated by multiple reflections off the right wall and the
door molding. Cluster 17 is still classified as unknown, despite the fact that
it corresponds to a real corner in the lower right-hand part of the room.
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Cluster Type Estimated Actual Difference
X Y X Y X Y

5 Point −1.007 −1.405 −1.000 −1.406 −0.007 0.001

6 Point 0.822 0.501 0.826 0.500 −0.004 0.001

7 MR 1.183 2.029 no target (multiple reflection)

8 Point 1.234 −0.996 1.230 −0.992 0.004 −0.004

9 Point 1.715 −0.979 1.712 −0.970 0.003 −0.009

10 Point 1.652 0.490 1.654 0.500 −0.002 −0.010

11 MR 2.556 0.508 no target (multiple reflection)

12 Point 0.299 −1.412 unrecorded

13 Point 0.734 −1.401 unrecorded

14 Point −1.006 0.516 −1.000 0.500 −0.006 0.016

Table 4.2: Comparison of learned point target parameters with
hand-measured values. Positions are given in meters, with respect to the
2nd vehicle position. Clusters 7 and 11 were tracks initiated for false multi-
ple reflections. Clusters 12 and 13 correspond to edge targets formed by the
pieces of cardboard used to construct the lower wall. The exact positions
of these edges were not recorded when the experiment was performed.

more complex than the simple room above, but mostly planar, and hence
the two-dimensional environment assumption is largely adequate. Figures
4.18 to 4.20 show the result of applying the same algorithm with the same
parameters to a sequence of 53 scans taken from accurately measured posi-
tions. The scans do not sufficiently cover the room to construct a complete
room map, but allow a tremendous amount of detail to be built up for the
right-hand part of the room.

The results are not perfect, but show the potential of the approach.
Two undesirable effects are visible in Figures 4.18 to 4.20:

• Distinct point targets of close proximity are merged together. This
effect is visible in clusters 20 and 21, which correspond to the ends
of two offices partitions. Each of these clusters actually corresponds
to two distinct corners a few centimeters apart that are only visible
from one side of the partition.

• The accidental alignment of RCDs from different targets occasionally
hypothesize false line targets. One such line target is visible in the
upper right-hand part of the room. Cluster 3 shows two erroneously
merged clusters.

These 53 scans represent 32,436 sonar returns. We envisage the accu-
rate mapping of typical indoor scenes, in terms of point, line and arc targets,
using thousands and thousands of returns, to produce concise, precise 2-D
maps.
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Figure 4.18: Map of the room produced by the algorithm. 2σ (major and
minor ellipse axes multiplied by 2) error ellipses are shown for point (corner
and edge) targets.

Figure 4.19: Learned map superimposed over room model. Triangles are
shown for each location from which a scan was taken.
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cluster 21 cluster 31

cluster 20cluster 17

cluster 1 cluster 3

Figure 4.20: Point and line clusters obtained during the run. RCDs for two
distinct line targets were erroneously merged together to form cluster 3.
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Cluster Estimated Actual Difference
R θ R θ R θ

1 1.706 0.6 1.712 0.0 −0.006 0.6

2 1.408 −89.0 1.402 −89.8 0.006 0.8

3 0.506 −89.8 0.50 90.0 0.006 0.2

4 −1.0013 0.1 −1.000 0.0 −0.013 0.1

Table 4.3: Comparison of learned line target parameters with
hand-measured values for the four scan map building run. Range is given
in meters, orientation in degrees.

Cluster Estimated Actual Difference
X Y X Y X Y

5 −1.011 −1.396 −1.000 −1.406 −0.011 0.010

6 0.812 0.499 0.826 0.500 −0.014 −0.001

7 1.235 −0.994 1.230 −0.992 0.005 −0.002

8 1.651 0.490 1.654 0.500 −0.003 − 0.010

9 −1.016 0.500 −1.000 0.500 −0.016 0.000

Table 4.4: Comparison of learned point target parameters with
hand-measured values for the four scan map building run. Positions are
given in meters, with respect to the 2nd vehicle position.

4.5.3 Learning From Four Scans

Accurate mapping is possible, however, with a small number of returns.
Remember, these scans were taken with the long-range sensing mode of
the standard Polaroid ranging system, and hence a high scanning density
is necessary to eliminate weak, erroneous returns. Also fewer scans can be
sufficient for reliable target identification. Figures 4.21 and 4.22 show the
re-application of the algorithm to the small clutter-free room above, using
just four scans. Tables 4.3 and 4.4 show a comparison of the hand-measured
and estimated maps for this run.

4.6 Multiple Hypothesis Track Initiation

In collaboration with Ingemar Cox of NEC Research Institute, we have
had the opportunity to formulate the specular event interpretation process
more rigorously using the multiple hypothesis tracking (MHT) filter [35].
The seminal work in the field of MHT is the work of Reid [111]. More
recent research in this area has been presented by Mori [102], Kurien [84],
Chong [30], and Chang [27].1 The appeal of MHT techniques is that they

1Reference [102] offers the brave reader a particularly challenging experience, but is
highly recommended.
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(e) (f)
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Figure 4.21: Learning with scans taken from four positions, part 1. (a)
through (d) show the result of median-filtering the raw scans with a 5
point window. (e) shows the result of extracting RCDs. (f) shows these
same RCDs superimposed on a hand-measured room model.
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(e) (f)

(d)(c)

(a) (b)

Figure 4.22: Learning with scans taken from four positions, part 2. (a)
shows the learned map, with 8σ error ellipses for corner targets. (b) shows
the map superimposed on the room model. (c) and (d) show clusters used
to initialize planar targets. (e) and (f) show clusters used to initialize corner
targets.
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can refrain from making irreversible decisions too early in the interpretation
process, as described by Chong et al.

The multiple hypothesis approach makes ‘soft’ data association de-
cisions when the available data are not of high enough quality. In-
stead of making firm commitments of associating measurements to
tracks, it forms multiple data association hypotheses corresponding
to alternate explanations of the origins of the measurements. These
hypotheses are evaluated with respect to their probabilities of being
true using the target and sensor models. [30]

This comment shows the natural suitability of MHT to bottom-up sonar
interpretation, for an RCD cannot be classified if observed in isolation; the
decision must be delayed until more data can be acquired. MHT techniques
use Bayes’ theorem to calculate probabilities for multiple data association
hypotheses based on known probabilities of detection and assumed densities
of clutter and new targets.

Careful analysis of the results of the previous section indicates that
some RCDs are assigned to both a corner and a wall target—for example,
clusters 1 and 6 in Figure 4.16 share three RCDs. The MHT approach
strictly enforces the constraint that a single measurement has a single origin:
plane, corner or multiple reflection (false alarm). Each new unexplained
observation initializes a tree of possible interpretation hypotheses. The
tree is grown as new observations are validated with hypothesized targets,
and is subsequently pruned to choose the single best interpretation of all
past measurements. Using multiple hypothesis tracking software written
at NEC Research Institute, successful map building results are reported in
[35] for the same data set used above. Accuracies similar to Tables 4.1 and
4.2 are achieved.

The potential drawbacks of the MHT approach in comparison with the
rule-based approach described earlier are:

• It is considerably more complicated.

• It assumes that the target estimate can be initialized from a single
observation [111].

This latter point rules out the classification of single, isolated returns from
a wide-angle sonar, unless amplitude or some other cue is used to obtain
a direct measure of target bearing. We believe, however, that MHT tech-
niques are very powerful, and have broader application beyond the problem
of plane-corner-cylinder classification [35].

4.7 Alternative Approaches

The unpublished work of Bozma and Kuc [15] describes an approach for
differentiating corner, plane, and edge targets using densely sampled data.
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Edges can be distinguished because they have smaller visibility angles than
corners and planes. Corners and planes can be differentiated by observ-
ing the change in orientation of the arc (RCD in our terminology) each
target produces when viewed from two locations. This approach appears
well-suited to carefully engineered hardware in which weak returns are not
present and target visibility angles do not change with range. Our approach
is more complicated, but can accommodate partially occluded targets and
single isolated returns in the same framework as for densely sampled data.

With the exception of Kuc and his associates, previous work has tended
to adopt one of two alternative approaches: line segment-based or grid-
based. Our initial attempts at extracting line segments from sonar data
were terribly frustrating, an experience reported by others. (Reconsider
Figures 2.26 and 2.27.) Repeated observations of actual data and consider-
ation of the physics of sonar led us to the RCD-based approach developed
above, which we feel out-performs the line segment-based approaches of
previous researchers. However, it should be mentioned that line segment
fitting performance will depend significantly on the sonar hardware con-
figuration. For example, comparing the two experimental systems used by
Crowley [37], [38], it is clear that fitting straight-line segments should be
much more reliable with the Robuter’s sensing configuration than with a
single servo-mounted sonar or with a circular ring of sonars.

The brittleness of line segment-based feature extraction was a moti-
vating force behind the occupancy grid concept of Moravec and Elfes [45].
Grid-type representations are primarily useful for obstacle avoidance, as
Borenstein and Koren’s recent successful results attest [14]. However, we
feel a grid-type map is less useful for predicting what sonar data will actu-
ally be observed from a given position, because different target types are
not explicitly represented. As a result, the explanation of single sonar mea-
surements is made difficult. Hence, position estimation is only possible with
a correlation-based technique, which is time-consuming and subject to the
cell resolution of the grid. Gilbreath notes that one motivation for using
a grid-type representation is that “it is hard to accurately glean polygonal
information from inexpensive sensors mounted on a mobile robot” [56]. The
results presented above provide strong evidence to the contrary.

For sonar interpretation we feel it is much easier to extract geometry
directly from the raw data, rather than that which has accumulated in the
grid. The information content of a return is highly dependent on the posi-
tion from which it was obtained. We think of individual returns as vectors
of length equal to the TOF range pointing from the vehicle position at the
angle of the sensor orientation. Detaching the TOF dot from “the center of
the circle” discards a great deal of information. We feel a highly desirable
characteristic of Borenstein and Koren’s vector field histogram formulation
is that it retains this sense of a return as a vector in the construction of the
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polar histogram [14].

Beckerman and Oblow [9], Gilbreath and Everett [56], Noborio et
al. [108] and Zelinsky [135] have used a grid representation to build sonar
maps. Beckerman and Oblow have presented a map building algorithm that
uses a consistent labeling scheme to resolve conflicts in a 6 inch cell resolu-
tion grid [9]. They use data structures called strings to refer to “sequences
of returns of similar range from adjacent scan angles bounded at both ends
by depth discontinuities” [9]. These seem to be a discrete equivalent to our
concept of regions of constant depth. The approach explicitly assumes the
absence of environment features smaller than a single grid cell, which would
rule out many features that are common in typical environments, such as
chair and table legs.

The vehicle Robart II, used by Gilbreath and Everett [56], uses two
sonar rings to build grid-type maps, one positioned near the floor and the
other about 4 feet off the ground. Mapping is based on the assumption that
transient obstacles tend to be lower to the ground, and hence visible to the
lower sonar ring, while permanent room features such as walls will be visi-
ble to the higher mounted ring. Zelinsky has implemented a successful map
building technique which produces accurate grid-type maps with 6 inch cell
resolution [135]. Whereas Beckerman and Oblow use scans from accurately
measured positions, Zelinsky and Gilbreath show results in which the vehi-
cle moved autonomously to build the map, relying on odometry for position
estimates after starting from a known location.

Overcoming multiple reflections is a vital task for any map building
scheme. Zelinsky [135] uses the sonar barrier test proposed by Drumheller
for this purpose. Gilbreath [56] and Mataric [92] fight multiple reflections
by discarding any measurements greater than some pre-defined distance,
which is 6 feet in Gilbreath’s case. Because of multiple reflections, No-
borio et al. only use one return out of the 24 returns that comprise each
scan [108]. In this approach, a quadtree representation is used. The short-
est return obtained in a 24 return sonar scan is used to define a free circle
which is assumed to be obstacle-free. Position estimation during the pro-
cess of map construction is not considered. In our approach, the effects
of multiple reflections do occasionally manifest themselves, but not to the
great extent to which they have plagued previous work. One reason for
this is that multiple reflections are often considerably weaker, and thus are
discarded in the process of RCD extraction. As shown in Figures 4.14 to
4.17, strong multiple reflections will cause erroneous point targets to be
initiated, but these will not be consistently observable from a wide range
of vehicle positions.

We feel the ultimate test of a map is not “does it look good?” but
“how accurately, adequately, or quickly can X be performed with it?” (X
in our case stands for localization, while for Borenstein and Koren it stands
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for obstacle avoidance.) We have not yet made the connection of feeding
an autonomously built map back to be used for localization. This is high
on our agenda for future research, as we see this as the only real proof of
performance.

4.8 Why Build Accurate Maps?

A basic premise of our research is that precise, dynamic localization is
necessary for many applications. Our line of reasoning progresses to assert
that to provide this capability, maps of some kind are necessary. Further,
to use sonar for this purpose, detailed and precise maps are necessary, so
that actual sonar observations can be predicted. Many people, especially
those in the behavior-based control community, would dispute this line of
reasoning:

Since globally consistent world models are hard to build and main-
tain, and perhaps not useful, consider the possibility of not building
them at all. Instead let us consider the possibility of using the world
as its own model. [19]

Brooks would take issue with our assertion that precise (x, y, θ) knowledge
of position with respect to a world coordinate frame is necessary. Human
beings do not answer the question “where am I?” in millimeters and degrees,
so why must a robot? Mataric has provided experimental proof of successful
sonar-based map building and navigation without an explicit geometric
approach [92]. For example, her robot Toto could “handle getting lost, and
relocate itself in the map later” [20].

The answer to this question is application-dependent; while qualitative
knowledge of position may suffice for many applications, precise numeric
knowledge of position is essential for others. The maps we want to build are
not an attempt at complete, detailed “world models”. We make no claims
regarding their sufficiency for planning. They are not three dimensional,
as visual maps need to be. Our purpose is to capture a sufficient amount
of real-world geometry to make subsequent registration with respect to a
world coordinate frame possible and efficient. Our maps are grounded in
the physical reality of acoustics. We dispute the assertion that “sonar data,
while easy to collect, does not by itself lead to rich descriptions of the world
useful for truly intelligent interactions” [18]. We feel that although maps
have been difficult to build with vision (though considerable progress has
been made, for example by Ayache and Faugeras [5]), sonar map building
is feasible with today’s sensors, as long as we think acoustically. These
models will of course be insufficient for many intelligent tasks, such as
manipulation, but they can be sufficient in many application environments
for navigation.
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We believe the experimental results of the proceeding chapter show
that globally consistent maps are useful for position estimation. The aim
of this chapter has been to show that with a good sensor model, accurate
maps can be built with sonar. Maintenance of the map is still a potential
difficulty; we will discuss this subject in the next chapter.



Chapter 5

Simultaneous Map

Building and Localization

This chapter attempts to combine our earlier results to develop a unified
framework for navigation. Unfortunately, combining the capabilities of lo-
calization and map building described earlier is not as straightforward as
one might hope; a number of complicating research issues enter the picture,
which will be described below. While these issues are important regardless
of the sensing modality employed, for our purpose here we shall maintain
our exclusive focus on sonar.

5.1 A Unified Approach to Navigation

Previous work in navigation has tended to treat the problems of localization,
obstacle avoidance, and map building in isolation. Approaches to obstacle
avoidance, such as the method of potential fields [127], are typically of no
use for localization. Algorithms for globally referenced position estimation,
such as the work of Cox [33], Sugihara [124], or Drumheller [40], rely on
an a priori map, but do not incorporate the construction of such a map.
Many algorithms for map building do not address the issue of localization
while the map is being constructed, relying instead on odometry or hand-
measuring of sensing locations [9], [56], [135]. The challenge posed by a
complete implementation of autonomous navigation is the simultaneous
realization of these different capabilities.

Figure 5.1 presents an overview of our approach to navigation, which
unifies the various aspects of the navigation problem in a common mul-
titarget tracking framework. As stated in the previous chapters, the use
of the term target in our application refers to a naturally occurring fea-
ture of the environment that can be observed by the sensors of the robot.

129
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The estimation of both vehicle and target locations by the use of sensor
information is carried out via multiple EKF’s. The crucial task in this pro-
cedure is data association, the process of achieving correspondence. Data
association comes in two forms: data-to-target association and data-to-data
association.

The set of state estimates for all currently known targets is called the
map. Observations that can be associated with targets in the map will be
called expected data. In contrast, observations that cannot be associated
with the map represent unexpected data. All sensor data is either expected
or unexpected. Localization is a process of using expected data to esti-
mate vehicle state. Detecting obstacles and changes to the environment
requires the explanation of unexpected data. In this sense, localization and
obstacle avoidance can be regarded as complementary. Map building and
map maintenance require the use of both of these capabilities. Expected
observations verify the presence of targets in the map and provide a means
of localization while further building the map. Unexpected observations
signify new environment features that need to be added to the map.

Targets in the map are classified at two levels: confirmed targets and
tentative targets. Confirmed targets are known with a high degree of geo-
metric precision, and are suitable for use in updating the vehicle position.
Tentative targets are still in the stage of being learned, and hence have a
large geometric uncertainty associated with them.

Data-to-target association takes place in measurement space, by com-
paring actual sensor observations with predicted sensor observations gener-
ated for targets in the map. A sensor model provides for prediction: given
the map and a hypothesized vehicle location, what observations should the
sensors produce? Matched observations and predictions for confirmed tar-
gets are used to update the vehicle position estimate, while matches to
tentative targets update the target state estimate.

The rejects from data-to-target association are unexpected observa-
tions. Multiple unexpected observations from different vehicle locations are
matched to one another in a process of data-to-data association. Matches
that yield a unique target interpretation are used to initialize new tentative
targets into the map. Subsequent matches to tentative targets are used
to update target state, not vehicle state. After a number of subsequent
observations of a tentative target are obtained to attain a sufficient level
of geometric precision, the target is promoted to be a confirmed target.
Subsequently, matched observations to this target are used to update the
vehicle position.

The sensor model described in Chapter 2 tells us that in the case of
sonar, expectations and observations take the form of regions of constant
depth (RCDs). Observed and predicted RCDs are matched using a valida-
tion gate defined by the Mahalanobis distance [7]. Matched RCDs provide



5.1. A UNIFIED APPROACH TO NAVIGATION 131

Estimate
Position

UPDATE

Targets
Using Confirmed

VEHICLE POSITION

Using Sensor Model

PREDICTION

Targets
For Tentative

Targets
Predicted

TARGET STATE
UPDATE

MAP

Expected RCDs Unexpected RCDs

New Targets

Matched RCDs

YES

NO

EXTRACT RCDs

Observed RCDs

Raw Sensor Data

MATCHING

EXPLANATION

Obstacle Detection

Track Initiation

Figure 5.1: A unified approach to navigation.
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innovations to update the vehicle location and confirm the presence of prior
known targets. The rejects from the validation gate represent unexpected
data, and need to be explained. As discussed in Chapter 4, a given unex-
pected RCD can be caused by a variety of geometric targets. By evaluation
of data-to-data association hypotheses for unexpected RCDs from different
vehicle locations, the correct target identity can be classified. This provides
a means of precisely learning the geometry of a scene by observing unknown
targets from multiple positions as the vehicle moves.

5.2 Research Issues

Unfortunately, implementing this navigation framework is not as straight-
forward as one might hope. A major reason for this is the correlation
problem: if a mobile robot uses an observation of an imprecisely known
target to update its position, the resulting vehicle position estimate be-
comes correlated with the feature location estimate. Likewise, correlations
are introduced if an observation taken from an imprecisely known position
is used to update the location estimate of a geometric feature in the map.
A rigorous solution to simultaneous map building and localization must
explicitly represent all the correlations between the estimated vehicle and
target locations.

One solution was provided by Smith, Self and Cheeseman [115], who
developed a Kalman filter based approach for building a stochastic map of
spatial relationships. Moutarlier and Chatila have presented a framework
similar to the stochastic map, but with the added feature that colored and
correlated noise is accommodated, and have implemented their approach in
two dimensions using laser range data [104]. Our engineering instincts tell
us that the stochastic map would be tremendously difficult to implement
in practice. One issue is computational complexity: in a two-dimensional
environment containing n geometric features, the stochastic map requires
a system state vector of size 2n + 3. Because the EKF is O(n3) [97],
the computational burden of the approach would be substantial in typical
application environments with hundreds of map features.

Two additional considerations are data association uncertainty and en-
vironment dynamics. As discussed earlier, data association is the process
of determining the origins of sensor observations, that is, associating mea-
surements with the geometric features that produced them while at the
same time rejecting spurious measurements [35]. Because the works of both
Smith, Self and Cheeseman and Moutarlier and Chatila implicitly assume
perfect data association, spurious measurements and incorrect matches or
groupings would likely have a severe impact on the stability of the stochastic
map representation. To further complicate the problem, dynamic environ-
ments require an inference procedure in which missed detections provide
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information pertaining to state changes in the map, such as the “disap-
pearance” of previously learned geometric features [87].

5.3 Restatement of the problem

To facilitate a more detailed consideration of these three issues, we now
present a brief restatement of the problem. The state of the environment
is specified by the true map, the set of target locations

M = {pt|1 ≤ t ≤ n} (5.1)

where n is the number of targets (geometric features) in the environment.
As described earlier, we model the environment in two dimensions with
three types of target: points, lines and arcs. The point target classifica-
tion encompasses both corners (concave dihedrals) and edges (convex di-
hedrals [83]). Lines represent 3-D planes and arcs represent 3-D cylinders.
The form of the target parameterization depends on the type of the feature,
as described in Chapter 2.

In the general setting of a dynamic environment, the true map is time-
varying as feature locations can change with time according to unknown
feature plant models. For our purposes here, we shall assume a static
environment in which feature locations do not change with time. Together,
the location of the vehicle and the state of the environment comprise the
system state vector xS(k):

xS(k) = [x(k),p1, . . . ,pn]
T

. (5.2)

As described in Chapter 3, the set of sonar observations obtained at
time k comprise the current data set Z(k):

Z(k) = {zj(k)|1 ≤ j ≤ m(k)}. (5.3)

The cumulative data set Zk is the set of data sets up through time k:

Zk = {Z(j)|0 ≤ j ≤ k}. (5.4)

We introduce the notation

zj(k)← pt(k)

to indicate that target t generates measurement zj(k) at time k. Each
measurement in a data set is assumed to be generated by (i.e. originate
from) a single target in the environment or to be a false alarm (in which
case we write zj(k)← ∅). The value of a measurement zj(k) is a function
of the vehicle location at time k and the location of the target from which
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it originated, subject to a noise disturbance, as given by the measurement
models described in Chapter 3.

The problem of simultaneous map building and localization requires
the computation of the number of features present, the type of each feature
(wall, corner, or cylinder), and p(xS(k) | Zk), the a posteriori probability
distribution of vehicle and target states conditioned on the cumulative mea-
surement set Zk [102]. The objective of the navigation framework shown
in Figure 5.1 is to use the EKF to recursively compute a minimum mean
square error (MMSE) estimate for xS(k):

x̂S(k | k) = [x̂(k | k), p̂1(k), . . . , p̂n(k)]
T

(5.5)

which is designated the system state estimate, and its covariance Λ(k | k)
(the system covariance matrix):

Λ(k | k) =









P(k | k) CR1(k | k) · · · CRn(k | k)
CR1(k | k) Λ1(k) · · · C1n(k)

...
...

. . .
...

CRn(k | k) C1n(k) · · · Λn(k)









(5.6)

where CRt(k | k) is a vehicle to target cross-covariance matrix and Cij(k)
is a target to target cross-covariance matrix.

The application of the EKF to undertake this computation was first
presented by Smith, Self, and Cheeseman [115], under the assumption of
perfect data association. Briefly, they advocate a two stage process of

1. vehicle position prediction
compute: x̂(k + 1 | k), P(k + 1 | k), and {CRt(k + 1 | k)|1 ≤ t ≤ n}
given: u(k), x̂(k | k), P(k | k), and {CRt(k | k)|1 ≤ t ≤ n}.

2. system state update
compute: x̂S(k + 1 | k + 1) and Λ(k + 1 | k + 1)
given: Z(k + 1), x̂(k + 1 | k),P(k + 1 | k), {Cij(k)|1 ≤ i < j ≤ n},

and {p̂t(k),Λt(k),CRt(k + 1 | k)|1 ≤ t ≤ n}.

In the absence of spurious measurements or incorrect data-to-target assign-
ments, the equations reported in [115] provide the optimal linear estimate
for the system state at time k. To our knowledge, implementation results
with this algorithm have not been published.

Moutarlier and Chatila have observed that in practice, the stochastic
map approach is subject to divergence, principally because of biases intro-
duced by linearization. In our own sonar-based experiments with the direct
algorithm, we have also observed this divergent behavior. To alleviate this
effect, Moutarlier and Chatila have proposed a suboptimal, three stage pro-
cedure, called the relocation-fusion approach, in which the system update
step above is replaced by:
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2 (a). vehicle position update (relocation)
compute: x̂(k + 1 | k + 1), P(k + 1 | k + 1), and

{CRt(k + 1 | k + 1)|1 ≤ t ≤ n}
given: Z(k + 1), x̂(k + 1 | k),P(k + 1 | k), and

{p̂t(k),Λt(k),CRt(k + 1 | k)|1 ≤ t ≤ n}.

2 (b). map update (fusion)
compute: {p̂t(k + 1),Λt(k + 1)|1 ≤ t ≤ n}, and

{Cij(k + 1)|1 ≤ i < j ≤ n}
given: Z(k + 1), x̂(k + 1 | k + 1),P(k + 1 | k + 1),

{p̂t(k),Λt(k),CRt(k + 1 | k + 1)|1 ≤ t ≤ n}, and
{Cij(k)|1 ≤ i < j ≤ n}.

By updating the vehicle state and then re-linearizing before attempting any
feature state updates, stability is enhanced [104].

We note that with either approach, Λ(k | k) is a 2n + 3 by 2n + 3
matrix whose cross-covariance sub-matrices CRt(k | k) and Cij(k) are non-
zero. Because the vehicle and target estimates are correlated, then each
time the vehicle position is updated, each vehicle-target covariance matrix
CRt(k | k) must be recomputed. Similarly, each time a target state estimate
is updated, one must update all cross-covariance matrices involving that
feature.

The results of the previous chapters addressed two limited forms of
this general problem. Localization with an a priori map can be restated
as: compute x̂(k | k), a globally referenced estimate of the robot location
at time k, given the set of control inputs Uk = {u(i)|0 ≤ i ≤ k}, a map
of the environment M(k) = {pt(k)|1 ≤ t ≤ n} and the cumulative data
set Zk. Map building from precisely known sensing locations can be stated
as: compute an estimate M̂(k) = {p̂t(k)|1 ≤ t ≤ n} of the state of the
environment given {x(i)|0 ≤ i ≤ k} and the cumulative data set Zk, i.e.
estimate the globally referenced locations of all geometric features in the
environment, given sensor measurements from known locations.

The motion and structure from motion problem discussed in Chapter 3
can be stated as: estimate the displacement dk (comprised of a rotation R

and a translation t) between two sensing locations x(k − 1) and x(k), and
position estimates for features visible at time k in the relative coordinate
frame defined by the vehicle’s current position. By compounding [114]
successive motion estimates starting at time k = 0, a globally referenced
estimate of vehicle location can be computed:

x̂(k | k) = x̂(0 | 0)⊕ d̂1 ⊕ d̂2 ⊕ . . .⊕ d̂k (5.7)

Our objection to this formulation rests with the covariance P(k | k) that
accompanies this global position estimate—it increases without bound:

lim
k→∞

trace(P(k | k)) =∞ (5.8)
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The robot is gradually getting lost, albeit perhaps quite slowly. No glob-
ally referenced geometry is computed to enable the robot to determine its
position when it travels through the same part of the world an hour or a
week later. The difficult question is “could the robot return to its starting
position, within a desired tolerance, such as 1 centimeter and 1 degree, af-
ter traveling a considerable distance?” To do this, one needs to compute
globally referenced geometry, which requires one to confront the correlation
problem.

5.4 A Strategy for Decoupling Λ(k | k)

Qualitatively, the utility of an observation from a map building perspective
depends on the accuracy with which the vehicle position from which the
observation was taken is known. Conversely, the utility of an observation
for position estimation depends on the accuracy with which one knows the
location of the feature being observed. We propose to take this view to
its extreme: measurements from inaccurately known positions should not
be used to update the location estimates of any geometric features; rather,
they should be simply thrown away.

We propose the following strategy: the robot can choose where it goes
and where it looks to build the map incrementally in a fashion such that
1) correlations are eliminated and 2) position in the global frame can be
estimated to within a desired tolerance, such as 1 centimeter and 1 degree.
The robot must have the ability to determine its position precisely, and to
do so it must precisely know the locations of some targets.1

To evaluate the accuracy of a state estimate, we shall compare the trace
of its covariance matrix P(k | k) or Λt(k) with a tolerance parameter εR or
εF , as appropriate. The values of εR and εF reflect when a covariance ma-
trix can be safely approximated as zero, and can be chosen experimentally.
Feature estimates that meet the criterion trace(Λt(k)) < εF will be des-
ignated confirmed targets. Likewise vehicle position estimates that satisfy
trace(P(k | k)) < εR will be designated confirmed vehicle locations.

The proposed sensing strategy can be stated as follows:

if zj(k)← pt(k):

if trace(Λt(k)) update x̂(k | k) with zj(k)

else if trace(P(k | k)) < εR update p̂t(k) with zj(k)

else ignore observation zj(k).

1This does not mean that the robot must precisely knows its position all the time,
only that it must do so before updating any target state estimates in its map.
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First, before moving, the robot needs to learn accurately the locations
of an initial confirmed feature set. Subsequently, after each move, the
robot takes observations of the initial feature set to determine accurately its
position, then takes observations of new features to estimate their locations.
Additional observations of these new features from subsequent accurately
known sensing locations will result in sufficiently accurate estimates that
these features can in turn be promoted to confirmed target status, and used
for vehicle localization.

We claim that this approach can sidestep the correlation problem. The
use of individual vehicle and target covariances will suffice, without explicit
representation of cross-correlations. Observations of confirmed targets up-
date vehicle position but not target state; observations of tentative targets
update target state but not vehicle position.

5.5 Initialization With Sonar

When using sonar, however, the initialization of this incremental procedure
seems impossible. The vehicle must move precisely to obtain sufficient mul-
tiple views of targets to classify them and precisely estimate their locations.
However to move precisely, the vehicle must have some map. We are con-
fronted with a question of which came first, the chicken or the egg? (the
map or the motion?).

To deal with this issue, we advocate the use of multiple servo-mounted
sensors mounted on the vehicle. One approach would be a four corners
sensing configuration, in which servo-mounted sensors are placed at each
corner of the vehicle. This configuration provides a way out of the getting
started paradox. The portion of the world visible from the initial vehicle
location can be precisely learned without moving the vehicle, because of
the known baseline between sensors. To provide evidence for this assertion,
reconsider Figures 4.21 and 4.22 of the previous chapter, that show a repeat
of the original map building run using the data of just four scans. In
this way, an initial confirmed target set can be learned without vehicle
motion. These confirmed targets can then be tracked as the vehicle moves
to provide accurate localization, while other sensors can be used to map
out new targets.

5.6 Dynamic Map Building and Maintenance

This section summarizes joint research with Ingemar Cox [87]. An impor-
tant issue that we have not yet addressed is the maintenance of a map in a
dynamic environment. The framework of Figure 5.1, is lacking a facility by
which targets no longer present in the environment can be removed. This
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issue is vital, despite the fact that discussions of this topic are hard to find
in the literature. To incorporate changing environments, we propose the
following extension to the navigation framework. In addition to the covari-
ance matrix Λt(k) used to represent uncertainty in the geometric estimate
of target t, we add a measure of belief in the existence of target t. We
define ct(k), a scalar taking values between 0 and 1, to be the credibility of
target t. The expanded map is now defined to be:

M(k) = {p̂t(k),Λt(k), ct(k), βt|1 ≤ t ≤ nT }. (5.9)

The result of matching is to yield three sets: matched predictions and
observations, unobserved predictions, and unexpected observations. For
each target, let ns(k) be the number of matched predictions, and nu(k) be
the number of unobserved predictions, up through time k. The following
update rule for ct(k) was proposed in [87]:

ct(k) = 1− e−(ns/A−nu/B). (5.10)

The coefficients A and B dictate the rate of learning and forgetting, respec-
tively. Targets for which ct(k) falls below zero are removed from the map.
Figure 5.2 shows the extension of the navigation framework of Figure 5.1
to incorporate map building and maintenance.

To provide results that incorporate this extension, Figure 5.3 shows a
longer map building run from the same data set as used in the previous
chapter. Scans 2 and 26 were taken with a changed environment, in which
a chair was inserted into the left part of the room, and a door leading
into the upper right part of the room was opened, to present two transient
objects. Figures 5.4 and 5.5 show these two modified scans. The scans were
processed off-line in a spiral sequence, starting from the upper left of the
figure. For this run, A and B, the learning and forgetting factors for the
credibility update function (Equation 5.10), were both set to a value of 5.

5.7 Summary

While we believe that Smith, Self, and Cheeseman [115] and Moutarlier
and Chatila [104] have made pioneering contributions in this area, we feel
the general problem of simultaneous map building and localization remains
open for three reasons: 1) the impact of correlations on computational
complexity; 2) data association uncertainty, and 3) dynamic environments.
As described in [35], we believe that multiple hypothesis tracking (MHT)
provides a rigorous framework in which to address the latter two problems.

To deal with the correlation problem, we have sketched a sensing strat-
egy that may permit one to sidestep the issue. To achieve genuine long-term
autonomy, it is not enough just to represent uncertainty; we need to reduce
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Figure 5.2: Expanded navigation framework incorporating map building
and maintenance. (This expansion of the framework was the product of
collaboration with Ingemar Cox of NEC Research Institute.)
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0.5 meters

Figure 5.3: Scan locations for an extended run in the same room as before,
using the dynamic map building extension. The shaded triangles indicate
the start and finish of the run.

uncertainty. The sensing strategy presented above aims to eliminate the
vehicle position uncertainty associated with a new set of measurements
before using those measurements to update the map, thereby eliminating
the cross-correlations between map features. This decouples the system
covariance matrix, easing the state estimation computational burden and
simplifying the data association procedure.

The global frame is anchored by an initial confirmed target set that
is learned before any vehicle motion takes place. Because walls, corners,
cylinders, and multiple reflections are indistinguishable in a single sonar
scan, we require that multiple servo-mounted sonars be mounted on the
vehicle, e.g., in a four corners sensing configuration. However, we cannot at
this stage verify the approach with experimental results. Experimentation
is required to establish what level of correlations can be safely ignored, and
at what stage significant performance degradation (i.e. EKF divergence)
occurs.

To address the issue of map maintenance in a changing environment, we
have summarized an expansion of the basic navigation framework that uses
the information provided by unobserved predictions (missed detections) to
decrease the credibility of targets in the map [87].

One might argue that we overestimate these difficulties. Despite their
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Figure 5.4: Scan taken with a modified environment. A chair was placed in
the left part of the room, obstructing the left wall, and the door in the upper
right-hand part of the room was opened. This is the 2nd scan processed
in the sequence, and was taken from the same position in the room as the
scan b0, shown at the start of Chapter 3.
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Figure 5.5: Scan taken with a modified environment. This is the 26th scan
processed in the sequence.
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Figure 5.6: Map of the room produced with the dynamic map building
algorithm. 8σ (major and minor ellipse axes magnified by 8) error ellipses
are shown for point (corner and edge) targets.

Figure 5.7: Learned map superimposed over room model.
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Figure 5.8: RCDs matched to initialize a line target for the left wall. A
triangle is shown at each location from which the target was observed. Note
the absence of a triangle for scans 2 and 26, the modified scans. A line is
drawn from each vehicle location to the midpoint of each RCD.
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Figure 5.9: Credibility vs time for the line target shown in Figure 5.27.
The credibility ct(k) rises exponentially as this target is repeatedly sighted,
except for steps 2 and 26 when the environment was modified to occlude
this target.
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Figure 5.10: A point track initiated by multiple reflection RCDs. The open
triangles show locations from which the hypothesized target was observed.
The shaded triangles show locations “between” the first two sightings from
which the hypothesized target was not observed.
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Figure 5.11: Credibility vs time for the target shown in Figure 5.29. The
credibility ct(k) is increased for each observation (open triangles in Figure
5.29) and decreased for each unobserved prediction (shaded triangles in
Figure 5.29).



146 MAP BUILDING AND LOCALIZATION

large size, the covariance matrices of the stochastic map may be manageable
in practice. Moutarlier and Chatila report that “the complexity of the
computations are such that computing time is satisfactory (a few seconds
for each step in the experiments shown ....)” [104]. In some situations, data
association ambiguity may be infrequent, as in Moutarlier and Chatila’s
experiments, where the use of the Mahalanobis distance suffices. However,
if this is not the case, an optimal algorithm that considers all possible data
association hypotheses and represents all cross-correlations would require
exponentially many 2n + 3 by 2n + 3 system covariance matrices.

An anonymous reviewer for one of Crowley’s papers has compared si-
multaneous map building and localization to “pulling yourself up by your
bootstraps” [38]. Rock-climbing offers a useful analogy for the problem. We
see map building as a methodical, incremental process, in which each suc-
cessive foothold (vehicle position) is made secure before the next advance.
The uncertainty introduced into the system by each move of the vehicle
must be eliminated as early and as often as possible. As a climber relies
on a safety rope, secured to the rock face at regular intervals, our robot
can hopefully retreat to safe, familiar terrain if it suddenly finds itself in a
tough spot with no previously mapped targets in sight, and hence cannot
drive its globally referenced position covariance to zero.



Chapter 6

Directed Sensing

Strategies

The use of a variety of sensing modalities is a good idea, of course. We
believe, however, that the key to progress in perception is extending the
capabilities of the sensors we already have, not waiting for better sensors.
At the least, such attempts should define what we want from better sensors.
And so, while we expect commercial mobile robots to rely on multiple
sensor systems for their redundancy and adaptability to a wide variety of
environments, we suspend reason for this chapter and ask “could navigation
(in all its meanings) be implemented exclusively with sonar?” and if so,
“how?”

6.1 The Time Problem

We would now like to readdress the results of the previous chapters in
terms of the question posed above, “is sonar-based navigation practical?”
Previous work characterized sonar’s two main problems as beam width
and specularity. We have shown how navigation is possible despite these
characteristics, and that in fact these “bugs” can be thought of as features.
However, as a result of our approach, a new enemy has emerged: time.

The scans processed in Chapter 4 contained 612 returns per scan, for
a separation between returns of 0.588 degrees, far lower than any we have
seen in the literature. The scanning device used, described in Appendix
A, has a data acquisition rate of 5 returns per second. This implies a
complete data acquisition time of 2 minutes per scan—a very impractical
length of time. However, this does not reduce the validity of these results.
Our reasons for the high scanning density were to try to develop a good
sensor model, i.e. to explain the errors of real Polaroid data. These turn

147
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out to be weak returns, arising from the 1.13 mSec duration of the standard
transmitted waveform. The high scanning density provides two functions:

• The use of local support to form RCDs.

• The elimination of weak returns.

An important point to remember is that weak returns will be absent from
data obtained in short-range sensing mode. Also, a point we have repeat-
edly stressed is that we rely heavily on range accuracy, while the informa-
tion implied by the sensor orientation is used as a constraint for correspon-
dence but not directly for estimation purposes. Hence, with a short-range
sensing mode, significantly fewer returns suffice. The implementations of
localization in Chapter 3 rely on this fact. In general, the problem sonar
interpretation poses is that the more returns you can acquire, the easier
interpretation becomes, but the more returns you acquire, the longer data
acquisition takes.

6.2 Tracking Sonars

In analogy with tracking radars [113], we propose the use of tracking sonars.
Distributed around the vehicle periphery, each possesses its own servo-
motor and a limited amount of computational resources. This local pro-
cessing can be used to focus attention on environment targets as the vehicle
moves. In this way, drastic changes in observations due to vehicle rotations
can be prevented by fast, local counter-rotations. An example layout of
tracking sonars is the “four corners” sensing configuration discussed in the
previous chapter. Tracking sonars seem ideally suited for realization via the
LISA (locally intelligent sensor agent) distributed estimation and control
concept being developed at the Oxford Robotics Research Group [44].

Tracking sonars can give a robot the ability to “grab hold” of envi-
ronment features as it moves to localize position. The concept of wall-
following is well-known in robotics. For example, an early realization of
this was achieved by Hilare [28]. Many wall-following approaches fit line
segments to multiple sonar returns obtained by a scanner or ring [77]. In
our approach, this is unnecessary. The model-based localization algorithm
described in Chapter 3 provides a method for using single range measure-
ments to provide an accurate position update in just one degree of freedom,
the direction perpendicular to the wall. By “range-locking” on a wall, for
example when traversing a corridor, a high rate stream of position updates
perpendicular to the wall can be achieved with a single sensor. A smart
local processor can substantially reduce the correspondence problem, by
counter rotating to stay fixated on the target as the vehicle moves, and
determining transitions from one target to another, for example from the
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wall to a corner as the end of the corridor or a doorway is reached. This is
analogous to the use of region-of-interest windowing in computer vision.

6.2.1 Corridor Navigation

For example, consider the task of a robot going down a corridor. Directed
sensing can be used to focus attention on each wall of the corridor. Position
updates to the wall can be used to reduce uncertainty in the vehicle position
estimate orthogonal to the wall. We have said nothing new so far, for wall-
following has been implemented by many researchers [28], [116]. But what
about position information in the direction parallel to the wall? Track-
ing sonars, looking ahead and behind the vehicle, can be used to “grab”
and track corner features along the corridor. Vertically oriented corner
features caused by door moldings, as commonly used for visual hallway
navigation [78], [133], present ideal ultrasonic navigation beacons.1

We see wall-following as just one instance of a more generic target
tracking capability for which sonar is ideally suited. Doorway moldings,
table legs, and chair legs are all good candidates for sonar focus-of-attention.
An added benefit of the of the use of multiple servo-mounted sensors on
a single vehicle would be the capability of “looking” backwards as well as
forwards. We envision a typical composite sensing strategy to traverse a
corridor as follows:

• side-mounted sonars tracking wall targets to each side, to provide
position information perpendicular to the corridor;

• corner-mounted sonars on the rear of the vehicle tracking point tar-
gets behind the vehicle to provide position information parallel to the
corridor;

• front-mounted sonars “looking” ahead for obstacles, corner targets
marking doorways, and the wall at the far end of the corridor.

6.2.2 Going Through a Door

From the manner in which sonar has been described in the literature, one
might think that sonar is particularly ill-suited for the task of guiding a
robot through a doorway. We believe the opposite is the case, but can-
not yet provide experimental support for our position. Instead we show

1Kriegman provides a good illustration of sonar data taken in a hallway, pointing
out a number of returns caused by doorway dihedrals [77]. His data looks somewhat
different to the scans we have shown earlier, for it is hard to see circular arcs (RCDs) in
his data. One explanation for this is that his scan was not taken by a single, centrally
mounted scanner, but by a sonar ring of non-zero diameter rotated on-the-spot through
a number of orientations. In this case, range values are not quite constant, and corner
target visibility angles can be much smaller, depending on how close the corner is.
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Figure 6.1: A motion sequence around an office partition. Each office
partition has corners at each end that are strong acoustic targets.

real sonar data obtained during a carefully staged run through two office
partitions that form a much wider opening.2 (See Figures 6.1 to 6.3.) The
office partitions have concave vertical dihedrals at each end that make good
acoustic targets. Almost all doorways we have encountered possess similar
corners. Going through a doorway with sonar can be achieved by looking
for, finding, and then tracking these corner targets. Figure 6.3 shows the
result of off-line processing of this data to achieve just this behavior. Two
RCDs from the initial scan of the sequence were selected by hand, and were
automatically tracked through subsequent scans to yield Figure 6.3. This
sequence shows the potential information that can be obtained by tracking
corner targets.

6.3 Orienteering

The sport of orienteering, established in thirty countries but perhaps not
very widely known, offers a useful analogy to the mobile robot navigation
problem. Like cross-country running, orienteering is a race against other

2Jean-Michel Valade of Matra MS2I originally proposed this experiment.
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Figure 6.2: RCDs extracted from the motion sequence, with the line seg-
ment model of the lower office partition removed from this picture. Each
corner in the model produces 2nd order RCDs which intersect at the corner.
From vehicle locations alongside the office partition, we get 1st order RCDs
which are tangent to it.
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Figure 6.3: Tracked RCDs corresponding to the edges of the two office
partitions. A line is drawn from the vehicle’s position to the center of each
RCD. Because of the asymmetry of Polaroid beam, the center of the RCD
does not correspond to the corner location, and hence the lines from the
vehicle to the target do not intersect in a point. We compute the location
of the corner by finding the point of intersection of the circles the RCDs
define.
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competitors and the clock. In addition it poses the challenge of navigation.
Getting lost dominates the orienteering experience for novices, who usually
finish the course in more than twice the time of the winner. Fast running
without careful navigation usually leads to tiredness and frustration. In ori-
enteering, “the main doctrine to follow at every level is to think orienteering
fast, not running fast” [96]. As an orienteer becomes more experienced, map
using skills increase. One key skill is map-to-world prediction: given the
map, what should I see? Another is world-to-map explanation: given an
environment feature, such as a vegetation boundary or a re-entrant, what
would it look like on the map? and where is it on the map?

Good orienteers never stop running. They are continually thinking,
checking off observed features against the map and planning ahead, making
route choices for future legs of the run. The first author’s recent attempts
at orienteering bore little resemblance to such prolific behavior, and instead
a “stop, look, move” procedure was employed. The sport is a race, but the
tremendous difference in skill levels (more navigation than fitness) results
in a broad spread of finishing times. Fitness has little utility if you cannot
navigate.

A major concern in route choice is the ease of position determination
along the route. This concern has to be weighed with the distance of the
route, but the former usually takes precedence for a novice orienteer. It is
far better to follow a 30 percent longer route along a well-marked path than
to use a compass bearing to charge straight for the goal through traversable
but visually complex vegetation. The reason for this is that “where am I?”
is not an issue along the path. Thinking resources can be used to plan
ahead or simply rested to allow concentration on pure running speed. In
contrast, straight-line navigation direct to the goal usually entails a much
higher risk of getting lost.

Path planning in robotics has almost exclusively used distance as a
criterion in evaluating route choice optimality. The risk of collision has
been addressed, by providing increased clearance at the expense of longer
paths. Criteria which have not been considered are the cost of determining
“where am I?” along a route and the risk of getting lost along a route.
From the standpoint of localization, some paths are easier to follow than
others. For example, because the six sensors on the SKIDS vehicle are
oriented parallel and perpendicular to the vehicle axis (see Appendix A),
sonar feedback from planar targets is only possible when the vehicle is
nearly perpendicular to the Manhattan-geometry environment.

From orienteering, we adopt the notion of map contact. In our frame-
work for navigation, we define: a mobile robot has attained map contact if
it has achieved correspondence between one or more current observations
(observed features) and targets (map features). An observation is current
for only the time step during which it was acquired, and thus Z(k), the set
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of observations taken at time k, can only be used to ascertain map contact
at time k. Map contact for a given perception cycle means: “were one or
more matches obtained during this cycle?” For fast localization, we want
to build a system that maintains continuous map contact, by obtaining
at least one match during each perception cycle. The power behind this
approach is that when correspondence can be assured, by “locking on” to
a target, a high bandwidth stream of easily usable information becomes
available.

Another requirement of mobile robot navigation which has an analogy
in orienteering is relocation, which is recovery from getting lost. In analogy
with orienteering, we believe that once a mobile robot does not “know”
where it is (loses map contact for a significant time interval), it should
stop. There is no sense for a robot to wander around avoiding obstacles if
it just makes the robot more and more lost. Relocation entails achieving
correspondence between observations and the map without accurate a pri-
ori position knowledge, but search can begin from the last known position
and take a rough estimate of distance traveled into account. Orienteering
map features take the form of points, such as isolated trees and re-entrants,
and linear features, such as streams and paths, in similar fashion to the
point and line acoustic targets abundant in indoor scenes. Instantiation of
a single feature will not uniquely determine position, because of the multi-
ple occurrences of feature types in the map, often very close to one another.
The many paths of an orienteering map are analogous to the many walls
an acoustic indoor map would contain. Relocation only comes from the
simultaneous consistent observation of several primitive features.

6.4 Related Research: Sensor Control

In sonar research, despite the prevalence of the fixed ring of sonars, some
researchers have used multiple servo-mounted sonars. Gex and Campbell
used intelligent sensor moves to direct their sonars to acquire desired in-
formation [55]. The Oxford AGV has 12 servo-mounted sonars which are
repeatedly scanned back-and-forth to detect obstacles [69]. Some vehicles
have multiple fixed sonars mounted on a movable head. These can be
finely rotated to acquire local support, but individual sonars cannot inde-
pendently track targets of interest.

Our notion of directed sensing is closely related to previous work which
has fallen under the title sensor control. Our earlier work addressed sensor
control within the context of a multi-sensor system [41]. Hager presented
discrete Bayesian computational methods for active information gather-
ing [61]. The discrete Bayesian methodology attained very high resolution,
such as using a CCD camera to estimate the width and height of a book to
an accuracy of tenths of a millimeter. The standard assumptions of MMSE
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estimation break down completely at these levels of accuracy. Cameron de-
veloped a Bayesian approach to optimal sensor placement [25]. A decision-
theoretic framework is applied to the questions “where should I look next?”
and “where should I look from next?” to make object recognition as effi-
cient as possible. Elfes has recently extended the occupancy grid concept
to incorporate sensor control; the expanded representation is referred to as
an inference grid [48].

The difference between directed sensing and sensor control is one of em-
phasis. Directed sensing focuses its efforts on maintaining correspondence.
Sensor control has focused on the optimization of the subsequent estima-
tion problem when multiple corresponding observations are available. In
this sense the two can be seen as complementary. Directed sensing can
provide a high bandwidth stream of correctly associated observations to
decision-theoretic estimation procedures. Because we address issues of cor-
respondence rather than refinement, we feel our use of less sophisticated
MMSE estimation techniques is justified.

6.5 Summary

This chapter has been speculative; our conclusions are based largely on
intuition, not hard evidence. The validation of these concepts through
experimental results is part of our future research agenda. We propose
an alternative methodology for sonar data acquisition based on the use of
locally intelligent, controllable sensors that can track point, line and arc
targets in the environment as the vehicle moves. We call these tracking
sonars. Our aim is to use them to make localization a continual question
of “am I lost yet?” instead of a now-and-then question of “where (out of
all possible locations) am I?” Mobile robots will get lost, and relocation is
essential, but localization via relocation is too slow for the basic perception
cycle.

An inspiration for this approach comes from the sport of orienteer-
ing, both from the first author’s not-so-successful attempts at the sport
and interviews with experienced orienteers. The orienteering concepts of
continuous map contact and tracking features such as streams, vegetation
boundaries, and fences are analogous to the directed sensing competences
we wish to provide our mobile robot in typical indoor environments, for ex-
ample “grabbing hold” of corners to “pull” itself through doorways or using
walls as “handrails”. Our approach remains unimplemented at this stage,
but hardware to implement such a system is currently in development at
Oxford.

The challenge of perception can be thought of as a war against the
correspondence problem, and a race against time. The aim of directed
sonar sensing is to acquire just a few returns during each iteration of the
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perception cycle, so you can win the race, but to acquire the best returns,
so you can win the war.



Chapter 7

Why Use Sonar?

I am getting on nicely in the dark.
James Joyce, Ulysses, Ch. 3

This monograph has investigated the problem of sonar-based naviga-
tion. By way of conclusion, this chapter assesses the potential of sonar in
comparison to other sensing alternatives and discusses an agenda of future
research.

7.1 Sonar vs the Infrared Rangefinder

In Chapter 2, we argued that many previous researchers followed a method-
ology suitable for an ideal ray-trace scanner, but less useful for sonar. Re-
cent advances in sensing technology have made available optical rangefind-
ers that do in fact approximate a ray-trace scanner. In our opinion, devices
that operate on a phase measurement principle are the best. The first
phase-based rangefinder was developed by AT&T Bell Laboratories in the
mid-1980s [99], [33]. Bell labs do not produce a commercial version, but
have licensed the technology to other companies. At the Oxford robotics
group, Brownlow, Adams, and Tarassenko have recently developed a novel
phase-based ranging device that may out-perform the AT&T sensor [126].

Optical rangefinders vary in scale from laser-based systems, of the type
used by Hinkel et al. [65], to inexpensive amplitude-based infrared devices,
as used by Flynn [52] and Connell [31]. The former offer precision at high
cost, while the latter cannot provide accurate range information because
of their sensitivity to surface reflectance properties. The AT&T design
achieves comparable performance to laser-based systems at much lower cost.
The transmitted signal is modulated at 5 MHz, enabling direct range infor-
mation to be obtained by measuring the phase shift between transmitted
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and received waveforms. An automatic gain control amplifier overcomes
variations in signal strength due to attenuation losses and changing surface
reflectance properties. A useful operating range of 20 feet is obtained, with
a typical range resolution of 1 inch. Because an infrared LED is used in-
stead of a laser, potential eye safety problems are avoided. As discussed in
Chapter 3, Cox has presented the successful use of the device to achieve
on-the-fly localization with an a priori map [33].

The AT&T rangefinder can take a complete, dense scan in less than 1
second. Given this fact, sonar seems hopelessly outclassed. However, we
believe that sonar’s great potential lies in the fact that typical indoor envi-
ronments contain surprisingly few acoustic targets. The task of achieving
and maintaining correspondence between observations and map targets will
be considerably easier in many environments with acoustic sensing. Inter-
pretation paradigms are possible in which single, isolated returns can be
used to update directly the vehicle position.

The limitations imposed by physics must be distinguished from the lim-
itations of the Polaroid ranging system design criteria. Sonar’s rate of data
acquisition is limited by the speed of sound, which is 343.2 meters per sec-
ond at 20 degrees Celsius. Through a policy of directed sensing, it should
be possible to obtain and process 100 returns per second in tracking a target
1 meter away. Very high vehicle position update rates should be possible if
directed sensing strategies are combined with a faster firing capability. To
prevent interference among sensors, the firing of multiple sensors must be
coordinated, but careful engineering should be able to meet this require-
ment. Frequency modulation and amplitude-based interpretation present
the opportunity for higher resolution [58]. However, we feel the simple
time-of-flight system has not been pushed to its resolution limit. Carefully
engineered hardware could completely eliminate the effects of weak returns
and assure constant target visibility over all ranges.

We believe sonar is a much better sensor for position estimation than
its reputation would suggest. The experimental evidence given in the previ-
ous chapters supports this conclusion. Conversely, the straightforward use
of a ring of transducers to form a “sonar bumper” is fraught with difficulty,
though Borenstein and Koren’s success shows it can be done. Their use of
very rapid sensor firing rates agrees in spirit with the concept of continuous
map contact described in the previous chapter. Dynamic operation will
require interpretation strategies that can accommodate fast sensor udpate
rates. Kuc is the only researcher who, to our knowledge, has made the claim
of 100 percent reliable collision prevention, using a good model of edge visi-
bility and conservative path planning. We propose the following challenging
and conclusive test of sonar obstacle avoidance: navigation through a field
of randomly placed vertical planes of glass. (Perhaps plexiglas would be a
wise substitute for real glass?)
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7.2 Sonar vs Vision

Of course, for many tasks computer vision will be necessary. With what
other sensing modality could a robot hope to confront the typical graduate
student’s bedroom after the laundry has been neglected for a few weeks?
Vision is by far our most powerful sense. Forget for a moment, however,
the miraculous data acquisition system through which you are reading this
sentence, and reconsider the typical CCD camera as a sensor that pro-
duces two hundred and sixty-two thousand, one hundred and forty-four
8-bit numbers every 40 milliseconds or so. From the more than seven mil-

lion numbers that flow from this fire-hydrant each second, to compute the
robot’s position all we really want is a drop of water—the three numbers
x, y, and θ. In a world that is “awash with photons” [107], it is impossible
to predict, or usefully process, any of these 8-bit numbers in isolation; the
information is embedded in a huge array. The existence proof of human
vision certainly tells us that a wealth of information is there to be grasped,
but how can the useful information be extracted from the array in timely
fashion? As a whole research field is dedicated to answering this fundamen-
tal and far-reaching question, we must send the reader elsewhere to ponder
the issue further.

With the luxury of an active sensor, the sonar-based localization system
described in Chapter 3 uses, on average, three 12-bit numbers to update
the robot’s position each time it moves.

To use sonar to its potential, one has to learn to look at the world
differently—to think like a sonar sensor. Under the influence of Figure
2.1 and many other figures like it, the first author gradually adopted this
alternative outlook through the course of 1989. For example, the realization
that we needed to add cylinders to the representation came one summer
evening during a (human) run around the Grand Canal of Versailles. Over
the next few days, another eighty or so scans were acquired in the SKIDS
room, thirty-four of which were used to form Figures 4.6 and 4.7. While
there can be no substitute for carefully acquiring dozens of sonar scans in a
variety of environments, the avid reader may wish to consult the first five
paragraphs of Chapter 3 of James Joyce’s Ulysses for additional inspiration
in this regard.

7.3 Sensor Fusion

The reader may have questioned the competitive tone of the previous two
sections—since different sensors have different strengths and weaknesses,
why not combine them? This appealing concept has received considerable
attention in the literature [41], and could fill another book on its own. For
our purpose here, we shall consider just two issues: the difference in physics
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between modalities and the virtue of self-reliance.
Consider two mobile robots, one equipped exclusively with infrared

range sensing, the other exclusively with sonar. Because these modalities
rely on different physics, the maps that each robot would need for navi-
gation would not be the same; the characteristics of the environment that
need to be made explicit in each representation would be different. For ex-
ample, suppose the environment had two walls, of similar dimensions, one
glass, the other plasterboard. These features would appear vastly different
to each modality, but relying exclusively on geometry, would have an iden-
tical representation in the map. Individual sensor observations could not
be predicted for each modality from a single, exclusively geometric map.
These considerations can lead one to question the “adequacy of geometry
as a common currency for sensing” [16]. Can it bridge the difference in
physics between modalities?

One sensor fusion paradigm that has received considerable interest is
the combination of infrared and sonar range sensing on a single vehicle [52].
Based on the argument above, we believe that the tempting proposition of
fusing sonar and infrared range data as the first step in interpretation should
be resisted. For example, we have stated in the past that sonar is “bad
at finding corners”, while infrared is “bad at measuring range”, but now
realize this is misleading. It may sometimes be hard to see the corners in a
sonar scan, but a sonar transducer produces measurements of the distance
to corners quite reliably. We feel that a system that operates these different
modalities in parallel, each with its own representation, would provide the
most capable robot in the field. In pursuit of this goal, we should push
the capabilities of each sensing modality, operating in isolation, to its limit.
Competition between sensing modalities in the research lab should someday
yield a more robust multisensor product on the factory floor or in the office.

7.4 Future Research

The plant and measurement models for our Kalman filters would benefit
greatly from increased sophistication. The vehicle motion error model,
illustrated by Figure 1.1, attempts nothing more than “each time the vehicle
moves, it gets slightly more lost.” The method of Muir’s thesis cries out for
application here, to develop a true dynamic model [105]. Improved sonar
error modeling would require another painstaking round of data acquisition,
but in our opinion should be postponed until the sonar electronics have been
completely redesigned.

As discussed previously, we use the term relocation to refer to the
process of determining position without the assistance of an a priori po-
sition estimate to help in achieving correspondence. This ability would
be necessary as part of a general navigation capability for error recovery
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and initialization. The standard work of this nature using sonar was per-
formed by Drumheller, who used line segment features in sonar data for
matching with a hand-measured line segment model [40]. Our arguments
against the use of line segments as features for sonar interpretation were
put forth strongly in Chapter 2. It would be fruitful in our opinion to re-
peat Drumheller’s work using RCDs instead of line segments as features for
matching within the Grimson and Lozano-Pérez interpretation tree frame-
work [60]. We would like to link this with the map building capability
we have attained to perform matching with autonomously learned room
models.

On the theoretical front, a rigorous treatment of the problem of data
association, so prevalent in robotics [36], may require a whole new set of
tools:

The problem of multitarget tracking is in general, given a cumulative

collection of data sets . . . (i) to compute the a posteriori probabil-
ity of [the number of] detected targets. . . and (ii) to obtain the a

posteriori probabilistic distributions of target states. This problem,
particularly the second one, differs radically from traditional estima-
tion problems because the basic objects in this problem, i.e. targets

and data sets, are not random vectors with fixed dimensions, but are
actually random sets. . . . the only known theoretically consistent way
of expressing the above two a posteriori probabilistic assessments
is through tracks and data-to-data association hypotheses as defined
below.

. . .

It is clear from [these equations] that this theory of multitarget track-
ing is actually an extension of general state estimation or filtering

theory. [27]

Can the theory of multitarget tracking offered by Chang, Mori, and Chong
be extended from the domain of swift point targets far off in the sky to the
everyday realm of three-dimensional shape [76] so close at hand?

Experimentally, our ultimate objective is a complete, hands-off imple-
mentation of navigation that achieves the multiple objectives of localization,
obstacle avoidance, and map building and maintenance. We would like to
place a robot in an unknown room, tell it “go”, and then come back a few
hours later to find the robot had completely mapped the room and was
ready to execute commanded trajectories quickly. We believe that such a
system can be implemented exclusively with today’s sonar hardware. The
current version of our software contains most of the code that would be
needed to do this, but the difficult task of simultaneous map building and
localization remains unimplemented.

As a first step, we want to build a very boring robot—one that could
efficiently determine its position using autonomously learned maps, and
could use this capability to navigate for hours and hours in unknown, static,
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unpeopled environments. We believe that this competence can be imple-
mented with the standard Polaroid transducer. The solution can then be
extended to more challenging dynamic environments.

7.5 Contributions

In summary, this research has made the following contributions:

• A sensor model that provides the ability to predict and interpret
real Polaroid sonar data in typical indoor environments has been pre-
sented.

• A novel model-based localization system has been implemented on
several different robots, and its performance has been analyzed.

• A map building algorithm based on the bottom-up interpretation of
RCDs has been developed, and its successful implementation with
real sonar data has been presented.

• A unified approach to the sonar-based navigation problem has been
presented that combines the multiple problems of localization, obsta-
cle detection, and map building in a common multitarget tracking
framework.

• Directed sensing strategies to permit practical sonar-based naviga-
tion have been described. Our localization and map building results
provide evidence that navigation with the exclusive use of sonar is
possible, but perhaps infeasibly slow. Our belief is that the applica-
tion of directed sensing strategies can make sonar-based navigation
practical.



Appendix A

Hardware and Software

A.1 Mobile Robots

Our research has made use of two different versions of the Robuter mobile
robot, manufactured by the French company Robosoft. One version of the
robot, unimaginatively referred to in this monograph as the SKIDS vehicle,
resides in the experimentation room of Matra MS2I in France. The other
vehicle, the latest addition to the Oxford AGV laboratory, will be called
the Oxford Robuter. Both Robuters have two on-board microprocessors: a
68020 vehicle controller and a 68000 dedicated to control of the sonar data
bus. The primary difference between the two vehicles is that the SKIDS
vehicle has six static sonar sensors, while the Oxford Robuter has eight. A
radio link provides wireless RS232 communication for both vehicles. Di-
mensions and sensor placings are shown in Figure A.2. The vehicle has two
rear wheels that can be independently driven and two passive casters at the
front. The front casters yield unpredictable and sometimes drastic “shop-
ping trolley” effects when the vehicle changes direction. Similar versions of
the Robuter are used by many other researchers, for example Crowley [38]
and Ayache and Faugeras [5].

A robot built by Martin Adams, called Eric, was used for part of our
research. The vehicle control interface eventually used for the Robuter was
initially developed for this vehicle, but for the results presented in Section
3.5, Eric was accurately placed by hand at each sensing location. Eric was
equipped with the sonar scanning device described below.

A.2 The Polaroid Ultrasonic Ranging System

The transmission properties of air are much less favorable than for water,
for which sonar was originally developed. For example, the absorption of
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Figure A.1: A look inside the Oxford Robuter. This version of the Robuter
has a 68020 central vehicle controller and a 68000 dedicated to the sonar
system. A special purpose 4-axis drive board and power supplies are also
contained in the computing rack. The eight sonars are connected via a local
network, with modified Polaroid driver boards located near each transducer.

sound in air at 80 khz is 2.9 dB/m compared with 0.02 dB/m for water [58].
The attenuation of ultrasound in air increases with frequency, and is a
function of temperature and humidity. Maslin characterizes this loss by an
attenuation constant A0 in dB/foot [91]. At 50 kHz he reports values for
A0 in the range of 0.2 to 0.6 dB/foot for variations in temperature from 17
to 28 degrees Celsius and variations in relative humidity from 15% to 70%.
The speed of sound in air is temperature-dependent, and characterized by
the relationship

c = 331.4
√

T/273 m/sec (A.1)

where T is the ambient temperature in degrees Kelvin.

A.2.1 The Circular Piston Model

Electrostatic transducers of the Polaroid type are usually modeled as a
plane circular piston in an infinite baffle [103], [91], yielding a radiation
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Figure A.2: Dimensions and sensor locations for the Robuter. The vehicle
has two driven rear wheels which are 24 centimeters in diameter, and two
passive front casters which are 12 centimeters in diameter. The six sonars
on the SKIDS vehicle are each fired individually. Sensors 3 and 7 and
sensors 6 and 8 are fired simultaneously on OxRob.
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characteristic function of:

P (θ) =
2J1(k a sin(θ))

(k a sin(θ))
(A.2)

where k = 2π/λ is the wave number, a is the transducer radius, and θ
is the azimuth angle measured with respect to the transducer axis. For
the Polaroid transducer, we use the values a = 19 mm and λ = 6.95mm.1

The circular piston beam pattern is plotted for these values in Figure A.3.
Equation A.2 can be solved to yield the −3dB point of the radiation pattern
by solving

θ = sin−1(1.62/ka) = 5.41◦. (A.3)

This yields a 3dB full beam width of about 11 degrees, but we believe
that this value is not very meaningful for interpreting Polaroid sonar data.
As discussed in Chapter 2, the crucial question is “over what range of
angles is a target visible?” The answer depends on the characteristics of
the transmitted pulse, target surface, receiver amplifier, and thresholding
circuit. For example, the figures of Chapter 2 illustrate that for planar
targets, side-lobe energy more than 20 dB lower than the on-axis radiation
level can generate TOF readings for the standard Polaroid system.

From our experiences with real sonar data, we have found that the ra-
diation patterns of Polaroid transducers are not symmetric, and vary from
transducer to transducer. These effects are more significant for the side-
lobes. We have not yet had the opportunity to quantify these conclusions.
As discussed earlier, Lang et al. have presented detailed experimental ev-
idence to characterize the Polaroid sensor [85]. We feel more work of this
nature needs to be done; for example, an analysis of variations between
transducers seems essential to properly characterize a multiple sonar sys-
tem.

A.2.2 Sonar Device Electronics

In the early stages of our research, we constructed a simple sonar scanning
device using the single-frequency driver board supplied by Polaroid. The
waveform transmitted by this driver circuit is 56 cycles of a 49.4 kHz square
wave, yielding a total pulse duration of 1.13 milliseconds. All of the densely
sampled sonar scans used in this book were obtained with this device. Our
sonar scanner uses three different transducers to take a complete scan, an
approach that was taken because of the limited angular rotation of the
servo-motor that was available. Variations in target responses from one
transducer to another were observed, but due to our RCD-based method-
ology, this had little effect on our sonar interpretation results.

1This wavelength is calculated assuming a frequency of 49.4 kHz and a temperature
of 20 degrees Celsius (speed of sound of 343.2 m/s)
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Figure A.3: Radiated sound intensity pattern for the Polaroid transducer,
as predicted by the plane circular piston model of equation A.2. The x axis
shows azimuth with respect to the transducer axis, in degrees. The y axis
shows acoustic intensity in dB relative to the on-axis level.



168 APPENDIX A. HARDWARE AND SOFTWARE

The analysis of the preceding chapters has implicitly assumed zero ra-
dial offset from the motor axis of rotation to the transducer. In fact, the
scanning device had a radial offset of about 2.5 centimeters. This adds a
small distance to the range to a target at high angles of incidence, which we
feel is safe to ignore for our hardware. For example, at an angle of incidence
of 15 degrees to a planar target, just under 1 millimeter is added to the
sensor range. The effect is more significant for larger radial offsets. For
example, the 30 centimeter radial offset of typical sonar rings would add
about 1 centimeter. Another impact of a large radial offset is decreased
point target visibility angles; this can explain some differences between
scanner and ring data which are apparent in the literature.

The sonar system supplied with the Robuter is equipped with two dif-
ferent pulse transmission modes: a long-range mode, essentially identical
to the scanning device we constructed, and a short-range mode, which
transmits a short pulse comprised of 8 cycles of the 49.4 kHz signal, for
a signal duration of 160 µSec. As discussed in Chapter 2, the short-range
mode provides greater range accuracy because weak returns are effectively
eliminated. For this reason, the short-range sensing mode has been used
exclusively in our work with the Robuter.

Note: as of this writing, the latest release of the Polaroid ranging sys-
tem uses a transmitted pulse that is 16 cycles (320µSec) in duration.2

A.3 Software

The experiments described in the preceding chapters have been imple-
mented via a single C program running on SUN-3 and SUN-4 workstations,
using SUNVIEW graphics facilities. The final version of the program con-
tained about 30,000 lines of C code. A suite of Kalman filtering routines
written by Chris Brown of the University of Rochester was used exten-
sively [21].

2Thanks to Ian Traherne for this information.
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